Asitleştirilmiş biyoçar uygulamalarının kaba bünyeli bir toprakta DTPA ile ekstrakte edilebilir mikro element içeriğine etkisi

Gazlaştırma işlemiyle elde edilen biyoçarlar genellikle alkali karaktere sahip olduklarından yüksek kireç içeren topraklara uygulanması bitki besin elementlerinin yarayışlılığını olumsuz etkilemektedir. Bu çalışma ile kumlu tınlı bünyeye sahip kireçli bir toprağa orijinal (alkali) ve asitle modifiye edilmiş biyoçar uygulamalarının toprakta pH, EC ve DTPA ile ekstrakte edilebilir mikro element içeriğine etkileri araştırılmıştır. İnkübasyon denemesinde orijinal (BpH9.4) ve farklı pH düzeylerinde asitleştirilmiş biyoçarlar (BpH6.5 ve BpH3.6) kullanılmıştır. Biyoçarlar dört farklı dozda (%0, %1, %2 ve %4) toprağa karıştırılarak 20-24oC’de inkübasyona bırakılmıştır. Tarla kapasitesi nem düzeyinde yürütülen inkübasyon denemesinin 30. ve 90. gününde toprak örneklemeleri yapılmıştır. Inkübasyon süresi uzadıkça toprakların pH ve EC değerlerinin arttığı belirlenmiştir. Toprak pH’sındaki en fazla artış kontrole kıyasla BpH9.4 uygulamasında (0.46 birim), en fazla azalış ise BpH3.6 (0.19 birim) uygulamasında olmuştur. Genel olarak BpH9.4 uygulaması toprak EC değerini azaltırken, BpH6.5 ve BpH3.6 uygulamaları artırmıştır. Kontrole kıyasla EC değerindeki en fazla artış BpH3.6 uygulamasında (%342) belirlenmiştir. İnkübasyon süresi uzadıkça toprakların pH, EC ve DTPA ile ekstrakte edilebilir Fe içeriği artarken, Cu, Mn ve Zn içerikleri azalmıştır. BpH3.6 uygulamasında DTPA ile ekstrakte edilebilir Fe (%49), Mn (%43) ve Zn (%16) içerikleri, BpH6.5 uygulamasında ise DTPA ile ekstrakte edilebilir Cu içeriği (%19) kontrole kıyasla artmıştır.

Effect of acidified biochar applications on DTPA extractable microelement content in a coarse textured soil

Since the biochars obtained by gasification process generally have alkaline character, their application to soils containing high lime content adversely affects availability of plant nutrients. This study was carried out to investigate the effects of original (alkaline) and acidified biochar applications on pH, EC and DTPA extractable micro element content in a calcareous sandy loam soil. In the incubation experiment, original (BpH9.4) and acidified biochars (BpH6.5 and BpH3.6) at different pH levels were used. Biochars were mixed into the soil at four different doses (0%, 1%, 2% and 4%) and incubated at 20-24°C. Soil samples were taken on the 30th and 90th days of the incubation experiment carried out at the moisture level at the field capacity. It was determined that the pH and EC values of the soils increased as the incubation period increased. The highest increase in soil pH was observed in the BpH9.4 application (0.46 units) compared to the control, and the highest decrease was observed in the BpH3.6 (0.19 units) application. Generally, BpH9.4 application decreased the soil EC value, while BpH6.5 and BpH3.6 applications increased it. The greatest increase in EC over the control was determined in the BpH3.6 application (342%). As the incubation period increased, the pH, EC and DTPA extractable Fe content of the soils increased, while the Cu, Mn and Zn contents decreased. In BpH3.6 application, DTPA extractable Fe (49%), Mn (43%) and Zn (16%) contents increased, and, DTPA extractable Cu content (19%) increased in BpH6.5 application compared to the control.

___

  • Baiamonte G, Crescimanno G, Parrino F, De Pasquale C. 2019. Effect of biochar on the physical and structural properties of a sandy soil. Catena, 175, 294-303.
  • Barnes R T, Gallagher M E, Masiello C A, Liu Z, Dugan B. 2014. Biochar-induced changes in soil hydraulic conductivity and dissolved nutrient fluxes constrained by laboratory experiments. PloS one, 9(9), e108340.
  • Bartell F E, Miller E J. 1923. Adsorption by activated sugar charcoal. II1, 2. Journal of the American Chemical Society, 45(5), 1106-1115.
  • Candemir F, Gülser C. 2011. Effects of different agricultural wastes on some soil quality indexes at clay and loamy sand fields. Communications in Soil Science and Plant Analysis 42(1): 13-28.
  • Cheng C H, Lehmann J. 2009. Ageing of black carbon along a temperature gradient. Chemosphere, 75(8), 1021-1027.
  • Cheng C H, Lehmann J, Thies J E, Burton S D, Engelhard M H. 2006. Oxidation of black carbon through biotic and abiotic processes, Organic Geochemistry, vol 37, pp1477–1488.
  • Demir Z, Gülser C. 2015. Effects of rice husk compost application on soil quality parameters in greenhouse conditions. Eurasian Journal of Soil Science 4(3):185-190.
  • Demir Z, Gülser C. 2021. Effects of Rice Husk Compost on Some Soil Properties, Water Use Efficiency and Tomato (Solanum lycopersicum L.) Yield under Greenhouse and Field Conditions. Communications in Soil Science and Plant Analysis, pp.1-18.
  • Demirkaya S, Gülser C, Ay A. 2021. The effect of iron enriched acidified and non-acidified biochars on DTPA extractable iron content of a calcareous soil. International Soil Science Symposium on "Soil Science & Plant Nutrition" 18-19 December 2021/Samsun, TURKEY, ISBN 978-605-63090-8-3. Samsun/TURKEY
  • Farkas É, Feigl V, Gruiz K, Vaszita E, Fekete-Kertész I, Tolner M, Molnár M. 2020. Long-term effects of grain husk and paper fibre sludge biochar on acidic and calcareous sandy soils–A scale-up field experiment applying a complex monitoring toolkit. Science of the Total Environment, 731, 138988.
  • Gholami L, Rahimi G. 2021. Chemical fractionation of copper and zinc after addition of carrot pulp biochar and thiourea–modified biochar to a contaminated soil. Environmental Technology, 42(22), 3523-3532.
  • Głąb T, Palmowska J, Zaleski T, Gondek K. 2016. Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma, 281, 11-20.
  • Gülser C, Candemir F, Kanel Y, Demirkaya S. 2015a. Effect of manure on organic carbon content and fractal dimensions of aggregates. Eurasian Journal of Soil Science, 4(1), 1.
  • Gülser C, Candemir F. 2012. Changes in penetration resistance of a clay field with organic waste applications. Eurasian Journal of Soil Science, 1(1), pp.16-21.
  • Gülser C, Candemir F. 2015. Effects of agricultural wastes on the hydraulic properties of a loamy sand cropland in Turkey. Soil Science and Plant Nutrition, 61(3), 384-391.
  • Gülser C, Kızılkaya R, Askın T, Ekberli I. 2015b. Changes in soil quality by compost and hazelnut husk applications in a hazelnut orchard. Compost Science & Utilization, 23(3), pp.135-141.
  • Gülser C, Minkina T, Sushkova S, Kızılkaya R. 2017. Changes of soil hydraulic properties during the decomposition of organic waste in a coarse textured soil. Journal of Geochemical Exploration, 174, pp.66-69.
  • Hansen V, Müller-Stöver D, Ahrenfeldt J, Holm J K, Henriksen U B, Hauggaard-Nielsen H. 2015. Gasification biochar as a valuable by-product for carbon sequestration and soil amendment. Biomass and Bioenergy, 72, 300-308.
  • Ippolito J A, Ducey T F, Cantrell K B, Novak J M, Lentz R D. 2016. Designer, acidic biochar influences calcareous soil characteristics. Chemosphere, 142, 184-191.
  • Ippolito J A, Laird D A, Busscher W J. 2012. Environmental benefits of biochar. J. Environ. Qual. 41, 973–989.
  • Karimi A, Moezzi A, Chorom M, Enayatizamir N. 2020. Application of biochar changed the status of nutrients and biological activity in a calcareous soil. Journal of Soil Science and Plant Nutrition, 20, 450-459.
  • Kumari K, Prasad J, Solanki IS, Chaudhary R. 2018 Long-term effect of crop residues incorporation on yield and soil physical properties under rice-wheat cropping system in calcareous soil. J Soil Sci Plant Nutr 18(1):27–40.
  • Lehmann J, Joseph S. 2015. Biochar for environmental management: an introduction. In Biochar for environmental management (pp. 1-13). Routledge.
  • Lehmann J, Joseph S. 2009. Biochar for environmental management: an introduction. In Biochar for Environmental Management: Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscan: London, pp 1-10.
  • Lindsay W L, Norvell W. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil science society of America journal, 42(3), 421-428.
  • Major J, Rondon M, Molina D, Riha SJ, Lehmann J. 2010 Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 333:117–128.
  • Mao J D, Johnson R L, Lehmann J, Olk D C, Neves E G, Thompson M L, Schmidt-Rohr K. 2012. Abundant and stable char residues in soils: implications for soil fertility and carbon sequestration. Environmental science & technology, 46(17), 9571-9576.
  • Mia S, Dijkstra F A, Singh B. 2017. Long-term aging of biochar: a molecular understanding with agricultural and environmental implications. Advances in agronomy, 141, 1-51.
  • Novak J M, Busscher W J, Watts D W, Amonette J E, Ippolito J A, Lima I M, Gaskin J, Das K C, Steiner C, Ahmedna M, Rehrah D, Schomberg H. 2012 Biochars impact on soil-moisture storage in an ultisol and two aridisols. Soil Sci 177:310–320. https://doi.org/ 10.1097/ss.0b013e31824e5593
  • Ramzani P M A, Shan L, Anjum S, Ronggui H, Iqbal M, Virk Z A, Kausar S. 2017. Improved quinoa growth, physiological response, and seed nutritional quality in three soils having different stresses by the application of acidified biochar and compost. Plant physiology and biochemistry, 116, 127-138.
  • Rengel Z. 2015 Availability of Mn, Zn and Fe in the rhizosphere. J Soil Sci Plant Nutr 15(2):397–409.
  • Richards L A. 1954 Diagnosis and improvement of saline and alkali soils. United States Department of Agriculture, Agriculture Handbook No. 60. Government Printing Office, Washington, DC.
  • Rondon M A, Lehmann J, Ramirez J, Hurtado M. 2007. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with biochar additions. Biol. Fert. Soils, 43(6): 699–708.
  • Rutkowska B, Szulc W, Sosulski T, Stępień W. 2014. Soil micronutrient availability to crops affected by long-term inorganic and organic fertilizer applications. Plant, Soil and Environment, 60(5), 198-203.
  • Sahin O, Taskin M B, Kaya E C., Atakol O, Emir E, Inal A, Gunes A. 2017. Effect of acid modification of biochar on nutrient availability and maize growth in a calcareous soil. Soil Use and Management, 33(3), 447-456.
  • Sakhiya A K, Anand A, Kaushal P. 2020. Production, activation, and applications of biochar in recent times. Biochar, 2, 253-285.
  • Sohi S P, Krull E, Lopez-Capel E, Bol R. 2010. A review of biochar and its use and function in soil. Advances in agronomy, 105, 47-82.
  • Sultan H, Ahmed N, Mubashir M, Danish S. 2020. Chemical production of acidified activated carbon and its influences on soil fertility comparative to thermo-pyrolyzed biochar. Scientific Reports, 10(1), 595.
  • Wang Y, Liu R. 2018. H2O2 treatment enhanced the heavy metals removal by manure biochar in aqueous solutions. Science of the Total Environment, 628, 1139-1148.
  • Xu Z, Xu X, Yu Y, Yao C, Tsang D C W, Cao X. 2021. Evolution of redox activity of biochar during interaction with soil minerals: Effect on the electron donating and mediating capacities for Cr(VI) reduction. Journal of Hazardous Materials, 414, 125483. https://doi.org/10.1016/j.jhazmat.2021.125483
  • Yang X, Tsibart A, Nam H, Hur J, El-Naggar A, Tack F M, Ok Y S. 2019. Effect of gasification biochar application on soil quality: Trace metal behavior, microbial community, and soil dissolved organic matter. Journal of hazardous materials, 365, 684-694.