Sentetik liflerden üretilen halat yapıları ve kullanım performansları

Endüstrinin inşaat, denizcilik, tekstil gibi dallarında farklı çaplarda ve uzunluklarda halatlar kullanılmaktadır. Çok farklı konstrüksiyon ve formda halatlar mevcuttur ve halatların bu farklı yapıları kullanım yerlerine göre önem arz etmektedir. Tekstil halatlarında hammadde seçimi ve konstrüksiyon parametreleri hem üreticiler hem de araştırmacılar için oldukça önemlidir. Özellikle sentetik liflerin mukavemet, aşınma direnci, yorulma dayanımı gibi kullanım özelliklerinin iyileştirilmesi halat endüstrisini yakından ilgilendirmektedir. Bir halattan beklenen performans özellikleri belli standartlar doğrultusunda halata uygulanacak testlerle belirlenebilir. Ancak halatın uzun veya çok geniş çaplı olduğu durumlarda ya da test ortamı hazırlanamayacak alanlarda kullanılan halatlar için testler yapılması gerektiğinde bu testler çok fazla zaman ve maliyet kaybına yol açacağından araştırmacılar üretim parametrelerine bağlı olarak halat özelliklerini tespit etmek amaçlı modellemeler üzerinde çalışmışlardır. Bu makalede, farklı yapıdaki halatlar tanıtılacak ve halat özelliklerini belirlemek için yapılmış modelleme girişimlerinden bahsedilecektir.

Structures of ropes produced with synthetic fibres and their usage performances

The ropes are used in various sizes and lengths for different application areas of industry such as civil engineering, marine and textile. These ropes vary in construction and formation and the structures of ropes are quite important considering their application areas. Raw materials used to produce textile ropes and production parameters are very important for both producers and researchers. Rope production industry is closely related to the usage performance properties of synthetic fibres such as strength, abrasion resistance, and fatigue. Rope performance can be determined by standard testing methods. However, due to economical and time consumption reasons for testing longer and wider ropes with same equipment or necessity for difficult testing conditions, researchers have studied developing rope models to determine the rope properties depending on production parameters. In this paper, different constructed ropes will be explained and attempts to develop models determining the performances of ropes will be mentioned.

___

  • 1. ASCE, (1993), Glossary of Marine Fiber Rope Terms,American Society of Civil Engineers, New York.
  • 2. ISO, (2001) DIS 1968 Ropes and cordage - vocabulary, ISO, Geneva.
  • 3. McKenna, H.A., Hearle, J.S.W. and O'Hear, N., (2004), Handbook of Fibre Rope Technology, Woodhead Publishing Ltd., Cambridge, England.
  • 4. www.alibaba.com. 05.05.2009
  • 5. www.chainsropesandanchors.co.nz. 04.05.2009
  • 6. www.defender.com. 03.05.2009
  • 7. http://moonblink.info/Images/Ropes. 05.05.2009
  • 8. www.advanruretraveller.co.uk. 13.05.2009
  • 9. Leech, CM., (1987), Theory and Numerical Methods for the Modelling of Synthetic Ropes, Communications in Applied Numerical Methods, Vol. 3, pp.407-713.
  • 10. Leech, CM., (2002), The Modelling of Friction in Polymer Fibre Ropes, International Journal of Mechanical Sciences, Vol. 44, pp. 621 -643.
  • 11. Wu, H.C, (1992), An Energy Approach for Rope- Strength Prediction, Journal of Textile Institute, Vol. 83, No 4, pp. 542-549.
  • 12. Wu, H.C, (1993), Frictional Constraint of Rope Strands, Journal of Textile Institute, Vol. 84, No 2, pp. 199- 213.
  • 13. Ghoreishi, S., Messager, T., Cartraud, P. and Davies, P., (2004), Assesment of Cable Models for Synthetic Mooring Lines, International Offshore and Polar Engineering Conference, Toulon, France.
  • 14. Nawrocki, A., and Labrosse, M., (2000), A Finite Element Model for Simple Straight Wire Rope, Computers and Structures, Vol. 77, pp. 345-359.
  • 15. Labrosse, M., Nawrocki, A., and Conway, T., (2000), Frictional Dissipation in Axially Loaded Simple Straight Strands, Journal of Engineering Mechanics, Vol. 126, No 6, pp. 641-646.
  • 16. Bradon, J., and Chaplin, C.R., (2005), Quantifying the Residual Creep Life of Polyester Mooring Ropes, International Journal of Offshore and Polar Engineering, Vol. 15,No3,pp. 223-228.
  • 17. Ghoreishi, S.R., Cartraud, P., Davies, P., Messager, T., (2007), Analytical Modelling of Synthetic Fibre Ropes Subjected to Axial Loads. Part I: ANew Continuum Model for Multilayered Fibrous Structures, International Journal of Solids and Structures, Vol. 44, pp. 2924-2942.
  • 18. Hobbs, R.E., and Raoof, M., (1982), Interwire Slippage and Fatigue Prediction in Stranded Cables for TLP Tethers, Behaviour of Offshore Structures, Vol. 2, pp. 77-99.
  • 19. Blouin, F., and Cardou, A., (1989), A Study of Helically Reinforced Cylinders Under Axially Symmetric Loads and Application to Strand Mathematical Modelling, International Journal of Solid and Structures, Vol. 25, No 2, pp. 189-200.
  • 20. Jolicoeur, C, and Cardou, A., (1994), Analytical Solution for Bending of Coaxial Orthotropic Cylinders, Journal of Engineering Mechanics, Vol. 120, No 12, pp. 2556-2574.
  • 21. Jolicoeur, C, and Cardou, A., (1996), Semi- continuous Mathematical Model for Bending of Multilayered Wire Strands, Journal of Engineering Mechanics, Vol. 122, No 7, pp. 643-650.
  • 22. Hoppe, L.F.E., (1991), Modelling the Static Behaviour of Dyneema in Wire-rope Construction, MTSRTM.
  • 23. Leech, CM., Hearle, J.W.S., Overington, M.S., Banfıeld, S.J., (1993), Modelling Tension and Torque Properties of Fibre Rope and Splices, Proceedings of the Third International Offshore and Polar Engineering Conference, 6-11 June 1993, Singapore.
  • 24. Rungamornrat, J., Beltran, J.F., and Williamson E.B., (2002), Computational Model for Synthetic-Fibre Rope Response, 15th Eng. Mechanics Conference, ASCE, New York, USA.
  • 25. Beltran, J. F., Rungamornrat, J., and Williamson, E. B., (2003), Computational Model for the Analysis of Damaged Ropes, 13th International. Offshore and Polar Engineering Conference, pp. 705-710, Honolulu, Hawaii, USA.
  • 26. Beltran, J.F., and Williamson, E.B., (2004), Investigation of the Damage-Dependent Response of Mooring Ropes, 14th International Offshore and Polar Engineering Conference, Toulon, France.
  • 27. Ghoreishi, S.R., Cartraud, P., Davies, P., Messager, T.,(2007), Analytical Modelling of Synthetic Fibre Ropes Part II: A Linear Elastic Model For 1+6 Fibrous Structures, International Journal of Solids and Structures, Vol. 44, pp. 2943-2960.
  • 28. Banfield,S.J., Flory,J.F.,(1995), Computer Modelling of Large,High-Performance Fiber Rope Properties,Oceans '95,pp.l563-1571,Oct.9-12,1995,San Diego.
  • 29. Kenney, M.C., Mandell, J.F., and McGarry, F.J., (1985), Fatigue Behaviour of Synthetic Fibres, Yarns and Ropes, Journal of Materials Science, Vol. 20, No 6, pp. 2045-2059.
  • 30. Mandell, J.F., (1987), Modelling of Marine Rope Fatigue Behavior, Textile Research Journal, June, pp. 318- 330.
  • 31. Banfıeld, S., and Casey, N., (1998), Evaluation of Fibre Rope Properties for Offshore Mooring, Ocean Engineering, Vol. 25, No 10, pp. 861 -879.
  • 32. Lo, K.H., Xu, H., and Skogsberg, L.A., (1999), Polyester Rope Mooring Design Considerations, International Offshore and Polar Engineering Conference, Brest, France.
  • 33. Fernandes, A.C., Del Vecchio, C.J.M., and Castro, G.A.V., (1999), Mechanical Properties of Polyester Mooring Cables, International Journal of Offshore and Polar Engineering, Vol. 9, No 3, pp. 208-213.
  • 34. Del Vecchio, C.J.M., (1992), Light Weight Materials for Deep Water Moorings, PhD Thesis, University of Reading, UK.
  • 35. Karayaka, M., Srinivasan, S., Wang, S., 1999, Advanced Design Methodology for Synthetic Moorings, Offshore Technology Conference, OTC 10912, Houston, Texas, USA.
  • 36. Davies, P., Grosjean, F., and Francois, M., (2000), Creep and Relaxation of Polyester Mooring Lines, Offshore Technology Conference, OTC 12176, Houston, Texas, USA.