ELEKTRO LİF ÇEKİM YÖNTEMİ İLE ÜRETİLEN TEK VE EŞ EKSENLİ NANOLİFLERİN ÖZELLİKLERİNİN KARŞILAŞTIRMALI ANALİZİ

Konvansiyonel elektro lif çekim yönteminin birden çok çözeltinin beslenmesine yönelik yapılan modifikasyonu ile elde edilen koaksiyal elektro lif çekim yöntemi, çok katmanlı nanoliflerin üretimini sağlayan bir yöntemdir. Bu çalışmada, koaksiyal elektro lif çekim tekniği kullanılarak öz kısmında gümüş nanopartiküller içeren polyamide 6 (öz) / polikaprolakton (kabuk) nanolifler üretilmiş ve elde edilen çok katmanlı nanolifler morfoloji, kimyasal yapı ve gümüş salım özellikleri açısından değerlendirilmiştir. UV-görünür bölge spektroskopisi, sentezlenen gümüş nanopartiküllerin 10 nm’den küçük olduğunu ve gümüş nanopartikül miktarının, çözeltiye eklenen prekursör miktarı ile orantılı olduğunu göstermiştir. PCL kabuk kısmının çözülerek uzaklaştırılması ve PA6 öz kısmının geride saf halde, nanolif formunda kalması ile koaksiyal nanolif yapısı doğrulanmıştır. Kabuk çözeltisinin besleme hızı arttırıldığında, nanolif yapısındaki PCL miktarı artmış ve FTIR spektrumunda PCL’e ait piklerin şiddetleri artmıştır. Nanoliflerin gümüş salım profillerinin nanolif konfigürasyonu, gümüş prekursör miktarı ve çok katmanlı nanoliflerde ayrıca kabuk kalınlığına bağlı olarak değiştiği görülmüştür.

COMPARATIVE ANALYSIS OF ELECTROSPUN UNIAXIAL AND COAXIAL NANOFIBERS PROPERTIES

Coaxial electrospinning, which is a modified electrospinning technique involving an arrangement of multiple solutionfeed systems, enable the production of multilayered nanofibers. In this study, multilayered nanofibers of polyamide 6 (core) /polycaprolactone (shell) containing silver nanoparticles in the core were produced by coaxial electrospinning method. UV-Visiblespectra showed that the size of nanoparticles were about 10 nm and the content of nanoparticles were observed to be proportional to theprecursor content added to the solvent. The obtained multilayered nanofibers were characterized in terms of morphology, chemicalstructure, and silver release properties. The multilayered nanofiber structure was confirmed by the selective dissolution and removal ofshell layer. The increase in the PCL content of the multilayered nanofibers with the increase in the flow rate of the shell solution wasconfirmed by FTIR. The silver release profiles of the nanofibers were observed to be dependent on the nanofiber configuration, andsilver content. Shell thickness was also an important parameter affecting the silver release properties for multilayered nanofibers.

___

  • 1. Fang J, Niu H, Lin T, Wang X (2008) Applications of electrospun nanofibers. Chin Sci Bull 53 (15):2265. doi:10.1007/s11434-008- 0319-0
  • 2. Fang J, Wang X, Lin T (2011) Functional Applications of Electrospun Nanofibers. In: T. L (ed) Nanofibers-Production, Properties and Functional Applications. InTechOpen, pp 287-327. doi:10.5772/916
  • 3. Picciani PHS, Medeiros ES, Pan Z, Orts WJ, Mattoso LHC, Soares BG (2009) Development of conducting polyaniline/poly(lactic acid) nanofibers by electrospinning. J Appl Polym Sci 112 (2):744-753. doi:https://doi.org/10.1002/app.29447
  • 4. Shi X, Zhou W, Ma D, Ma Q, Bridges D, Ma Y, Hu A (2015) Electrospinning of Nanofibers and Their Applications for Energy Devices. Journal of Nanomaterials 2015:140716. doi:10.1155/ 2015/140716
  • 5. Jiang H, Hu Y, Li Y, Zhao P, Zhu K, Chen W (2005) A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents. J Controlled Release 108 (2):237-243. doi:https://doi.org/10.1016/j.jconrel.2005.08.006
  • 6. Huang ZM, He CL, Yang A, Zhang Y, Han XJ, Yin J, Wu Q (2006) Encapsulating drugs in biodegradable ultrafine fibers through coaxial electrospinning. J Biomed Mater Res A 77 (1):169-179. doi:10.1002/jbm.a.30564
  • 7. Li XY, Li YC, Yu DG, Liao YZ, Wang X (2013) Fast disintegrating quercetin-loaded drug delivery systems fabricated using coaxial electrospinning. Int J Mol Sci 14 (11):21647-21659. doi:10.3390/ ijms141121647
  • 8. Mitchell TJ, Keller MW (2013) Coaxial electrospun encapsulation of epoxy for use in self-healing materials. Polym Int 62 (6):860-866. doi:https://doi.org/10.1002/pi.4397
  • 9. Neisiany RE, Khorasani SN, Kong Yoong Lee J, Ramakrishna S (2016) Encapsulation of epoxy and amine curing agent in PAN nanofibers by coaxial electrospinning for self-healing purposes. RSC Advances 6 (74):70056-70063. doi:10.1039/C6RA06434E
  • 10. Hu W, Yu X (2012) Encapsulation of bio-based PCM with coaxial electrospun ultrafine fibers. RSC Advances 2 (13):5580-5584. doi:10.1039/C2RA20532G
  • 11. Ojha SS, Stevens DR, Hoffman TJ, Stano K, Klossner R, Scott MC, Krause W, Clarke LI, Gorga RE (2008) Fabrication and characterization of electrospun chitosan nanofibers formed via templating with polyethylene oxide. Biomacromolecules 9 (9):2523- 2529. doi:10.1021/bm800551q
  • 12. Li D, Xia Y (2004) Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning. Nano Lett 4:933-938
  • 13. Zussman E, Yarin AL, Bazilevsky AV, Avrahami R, Feldman M (2006) Electrospun Polyaniline/Poly(methyl methacrylate)-Derived Turbostratic Carbon Micro-/Nanotubes. Adv Mater 18 (3):348-353. doi:https://doi.org/10.1002/adma.200501153
  • 14. Merkle VM, Zeng L, Slepian MJ, Wu X (2014) Core-shell nanofibers: Integrating the bioactivity of gelatin and the mechanical property of polyvinyl alcohol. Biopolymers 101 (4):336-346. doi:10.1002/bip.22367
  • 15. Pakravan M, Heuzey M-C, Ajji A (2012) Core–Shell Structured PEOChitosan Nanofibers by Coaxial Electrospinning. Biomacromolecules 13 (2):412-421. doi:10.1021/bm201444v
  • 16. Nguyen TTT, Chung OH, Park JS (2011) Coaxial electrospun poly(lactic acid)/chitosan (core/shell) composite nanofibers and their antibacterial activity. Carbohydr Polym 86 (4):1799-1806. doi:https://doi.org/10.1016/j.carbpol.2011.07.014
  • 17. Amiruddin Fadzli Z, Ranganathan B, Sundarrajan S, Ramakrishna S Coaxial electrospun nanofibers as pharmaceutical nanoformulation for controlled drug release. In: 14th IEEE International Conference on Nanotechnology, 18-21 Aug. 2014 2014. pp 531-534. doi:10.1109/NANO.2014.6968190
  • 18. Ibrahim S, Rezk MY, Ismail M, Abdelrahman T, Sharkawy M, Abdellatif A, Allam NK (2020) Coaxial nanofibers outperform uniaxial nanofibers for the loading and release of pyrroloquinoline quinone (PQQ) for biomedical applications. Nanoscale Advances 2 (8):3341-3349. doi:10.1039/D0NA00311E
  • 19. Zupančič Š, Sinha-Ray S, Sinha-Ray S, Kristl J, Yarin AL (2016) Controlled Release of Ciprofloxacin from Core–Shell Nanofibers with Monolithic or Blended Core. Molecular Pharmaceutics 13 (4):1393-1404. doi:10.1021/acs.molpharmaceut.6b00039
  • 20. Kharaghani D, Gitigard P, Ohtani H, Kim KO, Ullah S, Saito Y, Khan MQ, Kim IS (2019) Design and characterization of dual drug delivery based on in-situ assembled PVA/PAN core-shell nanofibers for wound dressing application. Scientific Reports 9 (1):12640. doi:10.1038/s41598-019-49132-x
  • 21. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27 (1):76-83. doi:https://doi.org/10.1016/j.biotechadv.2008.09.002
  • 22. Shi Q, Vitchuli N, Nowak J, Caldwell JM, Breidt F, Bourham M, Zhang X, McCord M (2011) Durable antibacterial Ag/polyacrylonitrile (Ag/PAN) hybrid nanofibers prepared by atmospheric plasma treatment and electrospinning. Eur Polym J 47 (7):1402-1409. doi:https://doi.org/10.1016/j.eurpolymj.2011.04.002
  • 23. Sichani GN, Morshed M, Amirnasr M, Abedi D (2010) In situ preparation, electrospinning, and characterization of polyacrylonitrile nanofibers containing silver nanoparticles. J Appl Polym Sci 116 (2):1021-1029. doi:10.1002/app.31436
  • 24. Mahapatra A, Garg N, Nayak BP, Mishra BG, Hota G (2012) Studies on the synthesis of electrospun PAN-Ag composite nanofibers for antibacterial application. J Appl Polym Sci 124 (2):1178-1185. doi:https://doi.org/10.1002/app.35076
  • 25. Kumar R, Münstedt H (2005) Silver ion release from antimicrobial polyamide/silver composites. Biomaterials 26 (14):2081-2088. doi:https://doi.org/10.1016/j.biomaterials.2004.05.030
  • 26. Sheikh FA, Barakat NAM, Kanjwal MA, Chaudhari AA, Jung I-H, Lee JH, Kim HY (2009) Electrospun antimicrobial polyurethane nanofibers containing silver nanoparticles for biotechnological applications. Macromolecular Research 17 (9):688-696. doi:10.1007/BF03218929
  • 27. Wang Y, Li Y, Yang S, Zhang G, An D, Wang C, Yang Q, Chen X, Jing X, Wei Y (2006) A convenient route to polyvinyl pyrrolidone/silver nanocomposite by electrospinning. Nanotechnology 17 (13):3304-3307. doi:10.1088/0957- 4484/17/13/037
  • 28. Hong KH (2007) Preparation and properties of electrospun poly(vinyl alcohol)/silver fiber web as wound dressings. Polymer Engineering & Science 47 (1):43-49. doi:https://doi.org/10.1002/ pen.20660
  • 29. Jeong L, Park WH (2014) Preparation and characterization of gelatin nanofibers containing silver nanoparticles. International journal of molecular sciences 15 (4):6857-6879. doi:10.3390/ijms15046857
  • 30. Lee SJ, Heo DN, Moon J-H, Ko W-K, Lee JB, Bae MS, Park SW, Kim JE, Lee DH, Kim E-C, Lee CH, Kwon IK (2014) Electrospun chitosan nanofibers with controlled levels of silver nanoparticles. Preparation, characterization and antibacterial activity. Carbohydr Polym 111:530-537. doi:https://doi.org/10.1016/j.carbpol.2014.04. 026
  • 31. Lala NL, Ramaseshan R, Bojun L, Sundarrajan S, Barhate RS, Ying- Jun L, Ramakrishna S (2007) Fabrication of nanofibers with antimicrobial functionality used as filters: protection against bacterial contaminants. Biotechnol Bioeng 97 (6):1357-1365. doi:10.1002/bit.21351
  • 32. Huang L, Zhai ML, Long DW, Peng J, Xu L, Wu GZ, Li JQ, Wei GS (2008) UV-induced synthesis, characterization and formation mechanism of silver nanoparticles in alkalic carboxymethylated chitosan solution. J Nanopart Res 10 (7):1193-1202. doi:10.1007/s11051-007-9353-0
  • 33. Bordes C, Fréville V, Ruffin E, Marote P, Gauvrit JY, Briançon S, Lantéri P (2010) Determination of poly(ɛ-caprolactone) solubility parameters: Application to solvent substitution in a microencapsulation process. Int J Pharm 383 (1):236-243. doi:https://doi.org/10.1016/j.ijpharm.2009.09.023
  • 34. Zhang W, Qiao X, Chen J (2007) Synthesis of silver nanoparticles— Effects of concerned parameters in water/oil microemulsion. Materials Science and Engineering: B 142 (1):1-15. doi:https://doi.org/10.1016/j.mseb.2007.06.014
  • 35. Wang Y, Yang Q, Shan G, Wang C, Du J, Wang S, Li Y, Chen X, Jing X, Wei Y (2005) Preparation of silver nanoparticles dispersed in polyacrylonitrile nanofiber film spun by electrospinning. Mater Lett 59 (24):3046-3049. doi:https://doi.org/10.1016/j.matlet. 2005.05.016
  • 36. Smith BC (1999) Infrared Spectral Interpretation, A systematic approach. CRC Press, Florid, USA
  • 37. Oliveira JE, Mattoso LHC, Orts WJ, Medeiros ES (2013) Structural and Morphological Characterization of Micro and Nanofibers Produced by Electrospinning and Solution Blow Spinning: A Comparative Study. Advances in Materials Science and Engineering 2013:409572. doi:10.1155/2013/409572
  • 38. Elzein T, Nasser-Eddine M, Delaite C, Bistac S, Dumas P (2004) FTIR study of polycaprolactone chain organization at interfaces. J Colloid Interface Sci 273 (2):381-387. doi:https://doi.org/10.1016/ j.jcis.2004.02.001
  • 39. Barati F, Farsani AM, Mahmoudifard M (2020) A promising approach toward efficient isolation of the exosomes by core–shell PCL-gelatin electrospun nanofibers. Bioprocess and Biosystems Engineering 43 (11):1961-1971. doi:10.1007/s00449-020-02385-7
  • 40. Silva JC, Udangawa RN, Chen J, Mancinelli CD, Garrudo FFF, Mikael PE, Cabral JMS, Ferreira FC, Linhardt RJ (2020) Kartogeninloaded coaxial PGS/PCL aligned nanofibers for cartilage tissue engineering. Materials Science and Engineering: C 107:110291. doi:https://doi.org/10.1016/j.msec.2019.110291
  • 41. Stachewicz U, Hang F, Bailey RJ, Gupta HS, Frogley MD, Cinque G, Barber AH (2012) Recording IR spectra for individual electrospun fibers using an in situ AFM-synchrotron technique. MRS Proceedings 1424:mrsf11-1424-ss1403-1406. doi:10.1557/ opl.2012.151
  • 42. Khodkar F, Golshan Ebrahimi N (2017) Preparation and properties of antibacterial, biocompatible core–shell fibers produced by coaxial electrospinning. J Appl Polym Sci 134 (25). doi:https://doi. org/10.1002/app.44979
  • 43. Xiaoqiang L, Yan S, Rui C, Chuanglong H, Hongsheng W, Xiumei M (2009) Fabrication and properties of core-shell structure P(LLACL) nanofibers by coaxial electrospinning. J Appl Polym Sci 111 (3):1564-1570. doi:https://doi.org/10.1002/app.29056
  • 44. Baghali M, Ziyadi H, Faridi-Majidi R (2021) Fabrication and characterization of core–shell TiO2-containing nanofibers of PCLzein by coaxial electrospinning method as an erythromycin drug carrier. Polym Bull. doi:10.1007/s00289-021-03591-3
  • 45. Movahedi M, Asefnejad A, Rafienia M, Khorasani MT (2020) Potential of novel electrospun core-shell structured polyurethane/starch (hyaluronic acid) nanofibers for skin tissue engineering: In vitro and in vivo evaluation. Int J Biol Macromol 146:627-637. doi:https://doi.org/10.1016/j.ijbiomac.2019.11.233
  • 46. Kumar R, Münstedt H (2005) Polyamide/silver antimicrobials: effect of crystallinity on the silver ion release. Polym Int 54 (8):1180-1186. doi:https://doi.org/10.1002/pi.1828
  • 47. Damm C, Münstedt H (2009) Silver Ion Release from Antimicrobial Acrylate Photopolymer Layers. Polym Polym Compos 17 (9):535- 543. doi:10.1177/096739110901700902
  • 48. Radheshkumar C, Münstedt H (2006) Antimicrobial polymers from polypropylene/silver composites—Ag+ release measured by anode stripping voltammetry. React Funct Polym 66 (7):780-788. doi:https://doi.org/10.1016/j.reactfunctpolym.2005.11.005
  • 49. Damm C, Münstedt H, Rösch A (2008) The antimicrobial efficacy of polyamide 6/silver-nano- and microcomposites. Mater Chem Phys 108 (1):61-66. doi:https://doi.org/10.1016/j.matchemphys. 2007.09.002
  • 50. Kumar R, Howdle S, Münstedt H (2005) Polyamide/silver antimicrobials: effect of filler types on the silver ion release. J Biomed Mater Res B Appl Biomater 75 (2):311-319. doi:10.1002/jbm.b.30306
  • 51. Xu X, Yang Q, Wang Y, Yu H, Chen X, Jing X (2006) Biodegradable electrospun poly(l-lactide) fibers containing antibacterial silver nanoparticles. Eur Polym J 42 (9):2081-2087. doi:https://doi.org/10.1016/j.eurpolymj.2006.03.032