BİKOMPONENT VE KARIŞIM HDPE/LDPE FİLAMENTLERİN ÜRETİMİ VE 3B YAZICILARDA KULLANIMI

Termoplastik polimerlerin geridönüşümü ve eritilerek yeniden şekillendirilebilmesi kolay olduğu için üç boyutlu (3B)yazıcılarda kullanımı son yıllarda yaygınlaşmıştır. Termoplastik polimerik yapılar önce eriyikten çekim yöntemi ile istenen özelliklerdefilament formuna getirilip daha sonra bu filamentlerin 3B yazıcılarda kullanılmasıyla 3B yapılar elde edilmektedir. Bu çalışmada,termoplastik polimerler olan düşük yoğunluklu polietilen (LDPE) ve yüksek yoğunluklu polietilen (HDPE)’den farklı oranlarda saf,karışım ve bikomponent filamentler eriyikten çekim yöntemi ile üretilmiştir. Üretilen filamentlerin kimyasal, mikroyapısal, termal vemekanik özellikleri incelenmiştir. Filamentlerin 3B yazıcılarda kullanılabilirliğini gözlemlemek için üretilen filamentlerden 3B yazıcıdanumuneler üretilmiştir. Üretilen filamentlerden bikomponent yapıda olan LDPE/HDPE filamentinin kullanılan 3B yazıcı için en uygunfilament olduğu tespit edilmiştir. Bu filamentten 3B balpeteği yapı üretilip, yapının basma mukavemeti özelliği PLA filamentindenüretilen balpeteği yapı ile kıyaslanması suretiyle incelenmiştir. LDPE/HDPE bikomponent filamentten üretilen balpeteği yapının basmamukavemeti özelliği piyasada yaygın kullanılan PLA’nın değerlerine yakın olduğu gözlemlenmiştir ve PLA gibi termoplastikkarakterde olan bu filament yapısının PLA’ya alternatif olarak 3B yazıcılarda kullanılabileceği sonucuna varılmıştır.

BICOMPONENT AND BLENDED HDPE/LDPE FILAMENT PORDUCTION AND USAGE IN 3D PRINTERS

Thermoplastic polymer have been used in 3D printing technologies since the objects produced via 3D methods by using thermoplastic materials can be recycled and reformed easly. In order to use a thermoplastic material in the 3D technologies, the thermplastic polymers are spun into fiber structures and then 3D objects are produced from these fibers. In this regard, low density polyethylene (LDPE) and high density polyethylene (HDPE) were melt spun into fiber with various construction including neat, blend and bicomponent forms. Chemical, microstructural, thermal and mechanical properties of the produced fibers were investigated. 3D printable properties of the prepared fibers were observed by using them in the 3D printer. It was observed that bicomponent LDPE/HDPE fibers were the most suitable fiber to produced 3D sample in the lab scale 3D printer. 3D honeycomb structure was produced from this fiber and its compression strength property was investigated by comparing the same size of the PLA honeycomb structure. Compression strength test result of the honeycomb sample produced from LDPE/HDPE bicomponent fiber was close to compression strength test result of the PLA honeycomb sample. The results revelaled that LDPE/HDPE bicomponent fibers could be an alternative to PLA fiber in 3D printing technologies.

___

  • 1. Zhang, Y. S., Yue, K., Aleman, J., Mollazadeh-Moghaddam, K., Bakht, S. M., Yang, J., Jia, W., Dell’Erba, V., Assawes, P., Shin, S. R., Dokmeci, M. R., Oklu, R., Khademhosseini, A., (2017), 3D Bioprinting for Tissue and Organ Fabrication. Annals of Biomedical Engineering, 45, 148-163.
  • 2. Bak, D., (2003), Rapid prototyping or rapid production 3D printing processes move industry towards the latter. Assembly Automation., 23, 340-345.
  • 3. Murr, L.E., (2016), Frontiers of 3D Printing/Additive Manufacturing: from Human Organs to Aircraft Fabrication. Journal of Materials Science and Technology, 32, 987-995.
  • 4. Sun, K., Wei, T. S., Ahn, B. Y., Seo, J. Y., Dillon, S.J., Lewis, J.A., (2013), 3D printing of interdigitated Li-ion microbattery architectures, Advanced Materials, 25, 4539-4543.
  • 5. Vak, D., Hwang, K., Faulks, A., Jung, Y. S., Clark, N., Kim, D. Y., Wilson, G. J., Watkins, S. E., (2015), 3D printer based slot-die coater as a lab-to-fab translation tool for solution-processed solar cells. Advanced Energy Materials, 5, 1401539-1401547.
  • 6. Compton, B. G., Lewis, J. A., (2014), 3D-printing of lightweight cellular composites. Advanced Materials, 26, 5930–5935.
  • 7. Blok, L. G., Longana, M. L., Yu, H., Woods, B. K. S., (2018), An investigation into 3D printing of fibre reinforced thermoplastic composites. Additive Manufacturing, 22, 176–186.
  • 8. Sang, L., Han, S., Peng, X., Jian, X., Wang, J., (2019), Development of 3D-printed basalt fiber reinforced thermoplastic honeycombs with enhanced compressive mechanical properties. Composites Part A: Applied Science and Manufacturing, 125, 105518.
  • 9. Yap, Y.L., Yeong, W.Y., (2015), Shape recovery effect of 3D printed polymeric honeycomb: This paper studies the elastic behaviour of different honeycomb structures produced by PolyJet technology. Virtual and Physical Prototyping, 10, 91–99.
  • 10. Hamod, H., (2015), Suitability of recycled HDPE for 3D printing filament, Thesis, Arcada University of Applied Science, Finland.
  • 11. Gabriel, L.H., (2015), History and Physical Chemistry of HDPE, https://plasticpipe.org/pdf/chapter-1_history_physical_chemistry_ hdpe.pdf
  • 12. Kreiger, M.A., Mulder, M.L., Glover, A.G., Pearce, J.M., (2014), Life cycle analysis of distributed recycling of post-consumer high density polyethylene for 3-D printing filament, Journal of Cleaner Production, 70, 90-96.
  • 13. Peng, F., Jiang, H., Woods, A., Joo, P., Amis, E. J., Zacharia, N. S., Vogt, B. D., (2019), 3D Printing with Core–Shell Filaments Containing High or Low Density Polyethylene Shells, ACS Applied Polymer Materials, 1, 275–285
  • 14. Da Silva D.J, Wiebeck H., (2018), CARS-PLS regression and ATRFTIR spectroscopy for eco-friendly and fast composition analyses of LDPE/HDPE blends, Journal of Polymer Research, 25, 112.
  • 15. Yıldırım, K., Özçağatay, U., Köstem, A.M., Güçer, Ş, (2009), Polietilen Tipinin Belirlenmesinde Analitik Metot. 12. Tekstil Teknolojisi ve Kimyasındaki Son Geliştirmeler Sempozyumu, 06 – 09 Mayıs 2009, KMO, Bursa, Turkey.
  • 16. Gulmine, J. V., Janissek, P. R., Heise, H. M., Akcelrud, L. (2002), Polyethylene characterization by FTIR, Polymer Testing, 21, 557– 563.
  • 17. Shahi, P., Behravesh, A. H., Haghtalab, A., Rizvi, G., Goharpei, F., (2017), An experimental study on foaming of linear low-density polyethylene/high-density polyethylene blends, Journal of Cellular Plastics, 53, 83-105.
  • 18. Munaro, M., Akcelrud, L., (2008), Correlations between composition and crystallinity of LDPE/HDPE blends, Journal of Polymer Research, 15, 83-88.
  • 19. Lin, Y., Du, W., Tu, D., Zhong, W., Du, Q., (2005), Space charge distribution and crystalline structure in low density polyethylene (LDPE) blended with high density polyethylene (HDPE), Polymer International, 54, 465–470.
  • 20. Schirmeister, C. G., Hees, T., Licht, E. H., Mülhaupt, R., (2019), 3D printing of high density polyethylene by fused filament fabrication. Additive Manufacturing, 28, 152–159.
Tekstil ve Mühendis-Cover
  • ISSN: 1300-7599
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1987
  • Yayıncı: TMMOB Tekstil Mühendisleri Odası