NEW TRENDS IN FIBERS USED IN DENIM FABRIC PRODUCTION

There is a tendency to use different fibers from cotton to improve the physical properties of conventional denim fabrics,add functional properties, and follow trends and fashion. Warp and weft yarns can be produced with 100% cotton or composed ofdifferent fibers optionally for denim fabric. In this study, a piece of detailed information was given about the fibers used for denimfabrics in recent years, and the effects of the fibers were evaluated. In the results of the review, the nature of the fiber and antibacterialproperty is the most prominent feature nowadays for cellulosic fibers. It is quite advantageous antibacterial fibers also have additionalfunctional properties without further processing. Wool and silk are widely used in conventional textile. They are especially preferredwhen thermal comfort is required in denim fabric production. Synthetic fibers are indispensable for denim especially when highperformance is needed. Also, it is important for the wearer to feel comfortable, so new generations of synthetic fibers that provide highcomfort are widely used. Elastane is a characteristic fiber of denim fabric and always a new type of elastane fiber is produced. Besideselastane used in flexible denim fabrics, elastomultiester fibers are popular now. These fibers do not contain elastane but they provideexcellent elasticity and recovery for the fabric.

DENİM KUMAŞ ÜRETİMİNDE KULLANILAN LİFLERDE YENİ TRENDLER

Geleneksel denim kumaşların fiziksel özelliklerini iyileştirmek, yeni fonksiyonel özellikler eklemek, trend ve modayı yakından takip etmek için pamuğun yanı sıra farklı lifler de tercih edilmektedir. Denim kumaşlarda çözgü ve atkı iplikleri tercihe bağlı olarak % 100 pamuktan üretilebildiği gibi, farklı lif kompozisyonları da kullanılmaktadır. Bu çalışmada, son yıllarda denim kumaşlarda kullanılan lifler hakkında detaylı bilgi verilmiş ve liflerin denim kumaşa etkileri değerlendirilmiştir. Buna göre, selüloz esaslı lifler için doğallık ve antibakteriyellik ön planda olan özelliklerdir. Bu liflerin sahip olduğu fonksiyonel özellikler, üretim sırasında ilave işlemlere gerek kalmamasından dolayı büyük bir avantaj kazandırmaktadır. Yün ve ipek, geleneksel tekstil üretiminde yaygın olarak kullanılmakla birlikte denim kumaş üretiminde, özellikle termal konfor gerektiğinde tercih edilmektedirler. Sentetik lifler, yüksek performanslı denim kumaş üretimi için vazgeçilmezdir. Ek olarak, kullanıcının rahat hissetmesi önemli olduğundan yüksek konforlu yeni nesil sentetik lifler yaygın olarak kullanılmaktadır. Elastan, denim kumaşların karakteristik lifidir ve elastan liflerine her geçen gün bir yenisi eklenmektedir. Esnek denim kumaşlarda kullanılan elastan liflerinin yanı sıra, elastomultiester lifler de ilgi çekicidir. Bu lifler elastan içermemelerine rağmen, denim kumaşlara mükemmel esneklik kazandırmaktadırlar.

___

1. Babaarslan, O., Sarıoğlu, E., Çelik, H.İ., Avcı, M.A., (2018), Denim Fabrics Woven with Dual Core-Spun Yarns, IntechOpen-Engineered Fabric, 1-23.

2. Okur, N., (2006),. Bambu Lifi ve İplik Özelliklerinin Diğer Lif ve İpliklerin Performans Özellikleri ile Karşılaştırmalı Olarak İncelenmesi, İstanbul University, Graduate School of Natural and Applied Sciences, Master’s Thesis, 1-62.

3. Turhan, Ö., Karaaslan, U., (2005), Yapay Lifler ve Özellikleri, Kimya Teknolojileri, 1-49.

4. https://carvedinblue.tencel.com/modal-black-denim-will-neverfade/, Date of access: November, 2019.

5. https://www.tencel.com/denim, Date of access: August, 2020.

6. Kumari, A., Khurana, K., (2016), Regenerated Cellulose-Based Denim Fabric for Tropical Regions: An Analytical Study on Making Denim Comfortable, Journal of Textiles, 1-10.

7. Karahan, H. A., Öktem, T., Seventekin, N., (2006), Doğal Bambu Lifleri, 236-240.

8. Liu, G., Zhang, H., Hu, X., (2004), The Dyeing Behaviours of Bamboo Fiber with Reactive Dyes and the Product Development, Proceedings of the Textile Institute 83rd World Conference, Shangai, China, 696-699.

9. Changjian, L., Mingli, Z., Jie, Z., Haolin, L., (2005), Develop of Light Weight Bamboo Cotton Blending Elastic Jean, Cotton Textile Technology, 03.

10. Zhu, Y., Cui, Y., (2005), Development and Production of Bamboo Regenerated Fibre Elastic Jean Cloth, Journal of Tianjin Institute of Textile Science and Technology, 04.

11. Sheng, Z. Y., (2010), Development of Bamboo/PTT/Cotton Blended Jean Fabric, Shangai Textile Science and Technology, 03.

12. Rathod, A., Kolhatkar, A., (2013), Physical Properties of Denim Fabrics (Part-I), Man-Made Textiles in India, 41(8), 269-273.

13. Nagarajan, G., Ramachandran, T., Boobalan, S., (2019), An Analysis of Quality Characteristics of Bamboo/Cotton Blended Yarns of Rotor and Ring Spun, International Research Journal of Science and Technology, 1(1), 31-34.

14. Wei, D., Zuo, D., Gan, H., Yi, C., (2019), Comparative Study on the Effects of Laser Bleaching and Conventional Bleaching on the Physical Properties of Indigo Kapok/Cotton Denim Fabrics, Applied Sciences, 9, 4662.

15. Wei, D., Gosh, R.C. Zuo, D.Y., Zou, H.T., Tian, L., Yi, C.H., (2016). Discoloration of Cotton/Kapok Indigo Denim Fabric by Using a Carbon Dioxide Laser, Fibres and Textiles in Eastern Europe, 24, 63-67.

16. https://bluebarnfiber.com/products/peppermint-fiber-mint-infusedfiber- spinning-felting-combed-top-sliver-fibre-beige-gold-coloreco- friendly-all-natural-vegan-textile?variant=4192504184862, Date of access: November, 2019.

17. Baohua, Z., Jingxin, L., Yelun, F., Liang, W., Hongya, C., Jie, F., Ying, X., Xuehua, P., Huimin, L., (2013), Mint Fiber and Modal Cotton Carbon Black Jean Fabric and Production Method Thereof, Engineering.

18. Arık, B., Yavaş, A., Avinç, O.O., (2017), Antibacterial and Wrinkle Resistance Improvement of Nettle Biofiber Using Chitosan and BTCA, Fibres & Textiles in Eastern Europe, 25, 3(123), 106-111.

19. Kurban, M., Yavaş, A., Avinç, O.O., (2011), Isırgan Out Lifi ve Özellikleri, Tekstil Teknolojileri Elektronik Dergisi, 2011, 5(1), 84- 106.

20. Kurban, M., Yavaş, A., Avinç, O.O., Eren, H.A., (2016), Nettle Biofibre Bleaching with Ozonation, Industria Textila, 46-54.

21. Şansal, S., (2017), Ekolojik Yüzey İşlemlerinin Isırgan İpliğinin Fiziksel ve Morfolojik Özelliklerine Etkisinin Araştırılması, Bartın University, Graduate School of Natural and Applied Sciences, Master’s Thesis, 1-68.

22. Özbey, Y., (2013), Isırgan Otu Lifiyle Elde Edilmiş Tekstillerde Görsellik, Marmara University, Graduate School of Fine Arts, Master’s Thesis, 1-173.

23. Bangsbo, E., (2016), A ‘Stinging’ Textile: Cultivation of nettle fibre in Denmark and Asia, Ancient Textiles Series, 20, 245-254.

24. Lee, J., (2018), A Study on the Change of Hand of Nettle Denim, J. Fash. Bus., 22(2), 107-117.

25. Ullah, A. A., Foisal, A., Nahar, N., (2016), Study on the Characteristic of Jute-Cotton Blended Fabrics, SEU Journal of Science and Engineering, 10(2), 11-16.

26. Azad, A. K., Jaffrin, S., (2009), Study on the Effect of Size Material on Jute-Cotton Union Fabric, Daffodil International University Journal of Science and Technology, 4(1), 42-44.

27. Elahi, S., Hosen, D., Islam, M., Hasan, Z., Helal, M., Rakin, S.S., (2019), Analysis of Physical & Chemical Properties of Cotton Jute Blended Denim After a Sustainable (Industrial Stone Enzyme) Wash, Journal of Textile Science and Fashion Technology, 3(2), 1-8.

28. Khan, A. M., Islam, M., Khan, M.R., (2020), Chitosan incorporation for antibacterial property improvement of jute-cotton blended denim fabric, The Journal of The Textile Institute, 111(5), 660-668.

29. Lu, L., Jiang, F., Ji, Y., (2004), Development and designation of linen denim fabric, Wool Textile Journal, 08.

30. Bihong, Z., (2004), A Study on the Production Process of Stretch Linen/Cotton Denim, China Textile Leader, 03.

31. Chun, D.T.W., Foulk, J.A., McAlister, D.D., (2009), Testing for Antibacterial Properties of Cotton/Flax Denim, Industrial Crops and Products, 29, 2-3, 371-376.

32. Chun, D.T.W., Foulk, J.A., McAlister, D.D., (2010), Antibacterial Properties And Drying Effects Of Flax Denim And Antibacterial Properties Of Nonwoven Flax Fabric, BioResources, 5(1), 244-258.

33. https://sourcingjournal.com/denim/denim-innovations/denimhemp- sustainable-alternative-virgin-cotton-174511/Zhang, H., Zhong, Z., Feng, L., (2016), Advances in the Performance and Application of Hemp Fiber, International Journal of Simulation Systems, Science & Technology, 17(9), 1-5.

34. https://long-john.nl/naked-famous-hemp-blend-selvedge/, Date of access: December, 2019.

35. Huang, C., Yu, W., (2005), Development of hemp jean fabric, Journal of Textile Research, 06.

36. Kalaycı, E., Avinç, O.O., Bozkurt, A., Yavaş, A., (2016), Tarımsal Atıklardan Elde Edilen Sürdürülebilir Tekstil Lifleri: Ananas Yaprağı Lifleri, SAÜ Fen Bil Der 20(2), 203-221.

37. Amutha, K., (2017), Environmental Impacts of Denim, Sustainability in Denim, 27-48.

38. Jiang, F., Ji, Y., Ye, F., (2004), The Design of Wool Denim and the Research of Its Wearability, Wool Textile Journal, 02.

39. Wei, X., (2005), Development and Production of Wool/Cotton Denim, Wool Textile Journal, 09.

40. Zhao, L., Sui, Rİ, (2013), Development of Wool/Cotton Blended Light Thin Leisure Comfortable Jeans Fabric, Wool Textile Journal, 41(7), 24-27.

41. Nawaz, N., Watson, C., Troynikov, O., (2016), Functional Benefits of Introduction of Merino Wool into Cotton Denim for Cold Weather Applications, Proceedings of the 9th Textile Bioengineering and Informatics Symposium in conjunction with the 6th Asian Protective Clothing Conference (TBIS-APCC 2016), Melbourne, Australia, 827-835.

42. https://www.woolmark.com/news/textile-innovation/wool-denim/, Date of access: November, 2019.

43. https://www.betabrand.com/silk-blend-denim-jeans-mens, Date of access: November, 2019.

44. Kontrannavar, S.S., (2008) Silk Denim-A New Generation Fabric, https://www.fibre2fashion.com/industry-article/3262/silk-denim, Date of access: August, 2020.

45. Üçgül, İ., Çörlü, Ş., Elibüyük, U., (2014), Fasulye Proteininden Rejenere Protein Elyafı Üretimi, 2. Uluslararası Tekstil Zirvesi, Kahramanmaraş, Turkey, 97-102.

46. Vynias, D., (2011), Soybean Fibre: A Novel Fibre in the Textile Industry, Soybean, Biochemistry, Chemistry and Physiology, 26, 461-494.

47. http://www.swicofil.com/soybeanproteinfiber.html, Date of access: December, 2019.

48. Ekinci, D., Sabır, E.C., (2018), Soya ve Pamuk Lifi İçeren Dokusuz Yüzey Kumaşların Hijyen Tekstili Performansının Deneysel İncelenmesi, Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 33(4), 165-174.

49. Yıldırım, F.F., Avinç, O.O., Yavaş, A., (2014), Soya Fasulyesi Protein Lifleri Bölüm 1, Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 19(2), 29-50.

50. Vora, P., (2016), Some Naturally Sourced Unknown Fibers Used in Textiles, International Journal on Textile Engineering and Processes, 2(3), 40-45.

51. Lawrence, C. A., (2003), Fundamentals of Spun Yarn Technology, CRC Press, Washington, United States of America, 46-47.

52. Liu, Y., (2007), Soft Finishing on Cashmere/Cotton Denim by Silicone, 04.

53. Kan, C., Yam, L., Ng, S., (2013), The Effect of Stretching on Ultraviolet Protection of Cotton and Cotton/Coolmax-Blended Weft Knitted Fabric in a Dry State, Materials, 6, 4985-4999.

54. Onofrei, E., Rocha, A., Catarino, A., (2011), The Influence of Knitted Fabrics' Structure on the Thermal and Moisture Management Properties, Journal of Engineered Fibers and Fabrics, 6(4), 10-22.

55. https://coolmax.com/en/Technologies-and-Innovations/ COOLMAX-technologies/NATURAL-TOUCH, Date of access: December, 2019.

56. He, L., Zhang, W., Ma, S., Wang, S., (2011), Denim-like Fabric Made of Coolmax Fiber, Dyeing and Finishing, 21.

57. Kara, G., (2019), Farklı Lif İçeriklerine Sahip Denim Kumaşların Yapısal Parametrelerle Bazı Yüzey Özellikleri Arasındaki İlişkilerin İncelenmesi, Uludağ University, Graduate School of Natural and Applied Sciences, MSc Thesis, 1-71.

58. https://thermolite.com/en/Apparel-Segments/Apparel- Segments/Denim, Date of access: December, 2019.

59. https://www.musto.com/en_GB/Thermolite.html, Date of access: December, 2019.

60. Thiry, M.C., (2011), Made to Order, AATCC Review, 31-35.

61. https://www.cordura.com/Fabrics/denim-fabric, Date of access: December, 2019.

62. Kurtulmuş, O., Güner, S., Akkaya, M. Ş., Kayaoğlu, B. K., (2018), Design and Development of Denim Fabrics with Improved Strength and Impact Abrasion Resistance for Motorcyclist Clothing, FIBRES & TEXTILES in Eastern Europe, 26, 1(127), 53-58.

63. Kara, G., Akgün, M., (2018), Effect of Weft Yarn Fiber Contents on the Moisture Management Performance of Denim Fabrics Woven with Different Constructional Parameters, Tekstil ve Konfeksiyon, 28(2), 151-161.

64. Emana Denim Brochure, https://emanafiber.com/en/emana-denim/, Date of access: August, 2020.

65. http://www.nilit.com/fibers/pr-00133.asp, Date of access: August, 2020.

66. Bulut, M.O., Akçalı, K.., (2012), Elastan İplik İçeren Örme Kumaşların Yağ Sökme İşleminin İncelenmesi, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(3), 262-269.

67. http://www.hyosung.com/en/biz/textile_trading.do, Date of access: August, 2020.

68. Kurban, N.S., Babaarslan, O., (2019), Süper Streç Denim Kumaşların Özelliklerine Dair Literatür İncelemesi, Tekstil ve Mühendis, 26(113), 104-115.

69. http://www.creora.com/en/trends/2020/denim/calvary.do, Date of access: August, 2020.

70. Kurban, N., (2019), Süper Streç Denim Kumaşların Geliştirilmesi ve Vücuda Uygulayacağı Basıncın Ölçümüne Yönelik Yeni Bir Test Cihazının İmalatı, Çukurova University, Graduate School of Natural and Applied Sciences, Phd Thesis, 1-204.

71. http://nogatex.com/tr/elastomultiester-2/, Date of access: August, 2020.

72. Rijavec, T., Bukosek, V., (2009), Novel Fibres for the 21st Century, Tekstilec, 10(12), 312-327.

73. Zhao, L., Hu, H., Shen, J., Rong, H., (2013), The Use of a Polytrimethylene Terephthalate/Polyester Bi-Component Filament for the Development of Seamless Garments, Textile Research Journal, 83(12), 1283-1296.

74. Sukanyadevi, R., Muralidharan, V., Kavya, C., (2018), Biopolymers Derived from Renewable Plant Sources and Application in Apparels, Sustainability in Fashion and Apparels, Woodhead Publishing India in Agriculture.

75. Özkan, M., (2019), PTT/Pamuk Karışımı OE-Rotor İpliklerinin ve Bu İpliklerin Kullanıldığı Denim Kumaşların Performans Özelliklerinin Araştırılması, Çukurova University, Graduate School of Natural and Applied Sciences, MSc Thesis, 1-135.

76. Yıldırım, F.F., Avinç, O.O., Yavaş, A., (2012), Poli (Trimetilen Tereftalat) Lifleri Bölüm 1: Üretimi, Özellikleri, Kullanım Alanları, Çevresel Etkisi, Tekstil ve Mühendis, 19(87), 43-54.

77. http://sorona.com/apparel/, Date of access: August, 2020.

78. https://connect.lycra.com/en/Technologies-and-Innovations/Fiber- Technologies/T400, Date of access: August, 2020.

79. http://www.denimsandjeans.com/denim/manufacturingprocess/ super-stretch-super-comfort-super-recovery-and-otherdenim- selections-from-invista/2474, Date of access: August, 2020.

80. Çataloğlu, A., (2007), Elastan Karışımlı Denim Kumaşların Elastikiyet ve Kalıcı Deformasyon Özellikleri Üzerine Bir Araştırma, Ege University, Graduate School of Natural and Applied Sciences, MSc Thesis,1-63.

81. Zhao, Y., (2017), Producing Protective Denim from Dyneema®/Cotton İntimate Blended Spun Yarns, North Carolina State University, Master’s Thesis, 1-132.

82. Hurrena, C. J., Phillips, P., Zhuang, Y., Wanga, X., (2014), Thermal Comfort Levels and Abrasion Resistance of Protective Denim Motorcycle Clothing, Australasian Road Safety Research Policing Education Conference, Australia, Melbourne, 1-8.

83. Karbalaie, M., Yazdanirad, M., Mirhabibi, A., (2012), High Performance Dyneema® Fiber Laminate for Impact Resistance/ Macro Structural Composites, J. Thermoplast. Compos. Mater, 25(4), 403-414.

84. Wit, A. J., Ng, R., (2019), A Prototype for Climatically Active Light- Weight Skins, Design, Algorithmic And Parametric 2, 2, 627-636.

85. https://pandomoto.com/dyneema/, Date of access: August, 2020.