A NOVEL APPROACH FOR FABRICATION OF THERMOPLASTIC STARCH BASED BIOCOMPOSITES

In this study, jute fiber/thermoplastic starch based (TPS) biocomposites were fabricated by using a novel mixing method. Dry mixing of filler and matrix was carried out by using a planetary high shear mixer. Various levels of fillers were used in order to observe the effect of fiber ratio on mechanical, structural and thermal properties of the composites. Both tensile strength and elastic modulus values of biocomposites were found to be improved by incorporation of jute fibers. The enhancement was attributed to the reinforcing effect of jute fibers and strong interphase between the filler and polymeric matrix that was also shown by morphology and FTIR analysis. In addition to those, thermal stability of the TPS composites increased by addition of the jute filler.

TERMOPLASTİK NİŞASTA ESASLI BİYOKOMPOZİTLERİN ÜRETİMİ İÇİN YENİ BİR YAKLAŞIM

Bu çalışmada, özgün bir karıştırma yöntemi kullanarak jüt lifleri ve termoplastik nişasta (TPN) esaslı biyokompozitler üretilmiştir. Kuru karıştırma işlemi, yüksek kayma hızında yörüngesel olarak çalışan bir karıştırıcıda gerçekleştirilmiştir. Lif oranının kompozitin mekanik, yapısal ve ısıl özelliklerine olan etkisini gözlemlemek amacıyla farklı dolgu oranları kullanılmıştır. Biyokompozitlerin hem kopma dayanımlarının hem de elastik modül değerlerinin jüt lifi ilavesi ile arttığı bulunmuştur. Bu artışın, jüt liflerinin takviyelendirme etkisinden ve morfoloji, FTIR analizlerinde de gösterilen lif polimer arasındaki güçlü arayüzeyden kaynaklandığı düşünülmektedir. Tüm bunların yanında jüt liflerinin ilavesi ile TPN kompozitlerin ısıl stabilitesi artmıştır.

___

1. Saleh, A.A., et al., (2017). Insights into the effect of moisture absorption and fiber content on the mechanical behavior of starch– date‐palm fiber composites. Starch‐Stärke, 69(7-8), pp.1600254.

2. Mohammadi Nafchi, A., et al., (2013). Thermoplastic starches: Properties, challenges, and prospects. Starch‐Stärke, 65(1‐2), pp.61-72.

3. Ray, D., et al., (2007). A Study of the Mechanical and Fracture Behavior of Jute‐Fabric‐Reinforced Clay‐Modified Thermoplastic Starch‐Matrix Composites. Macromolecular Materials and Engineering, 292(10‐11), pp.1075-1084.

4. Averous, L. and Boquillon, N., (2004). Biocomposites based on plasticized starch: thermal and mechanical behaviours. Carbohydrate Polymers, 56(2), pp.111-122.

5. Prachayawarakorn, J., et al., (2013). Effect of jute and kapok fibers on properties of thermoplastic cassava starch composites. Materials & Design, 47, pp.309-315.

6. Torres, F. G., Arroyo, O.H. and Gomez C., (2007). Processing and Mechanical Properties of Natural Fiber Reinforced Thermoplastic Starch Biocomposites. Journal of Thermoplastic Composite Materials, 20(2), pp.207-223.

7. Hedayati Velis, H., Golzar, M. and Yousefzade, O., (2018). Composites based on HDPE, jute fiber, wood, and thermoplastic starch in tubular pultrusion die: The correlation between mechanical performance and microstructure. Advances in Polymer Technology, 37(8), pp.3483-3491.

8. Soykeabkaew, N., Supaphol, P., and Rujiravanit, R., (2004). Preparation and characterization of jute- and flax-reinforced starch-based composite foams. Carbohydrate Polymers, 58(1), pp.53-63.

9. Wang, P., et al., (2017). Large‐scale preparation of jute‐ fiber‐reinforced starch‐based composites with high mechanical strength and optimized biodegradability. Starch‐Stärke, 69(11-12), pp.1700052.

10. Iman, M. and Maji, T.K., (2013). Effect of crosslinker and nanoclay on jute fabric reinforced soy flour green composite. Journal of applied polymer science, 127(5), pp.3987-3996.

11. Gassan, J. and Bledzki, A.K., (2001). Thermal degradation of flax and jute fibers. Journal of Applied Polymer Science, 82(6), pp.1417-1422.

12. Alves, C., et al., (2010). Ecodesign of automotive components making use of natural jute fiber composites. Journal of Cleaner Production, 18(4), pp.313-327.

13. Ahmed, A.S., et al., (2014). Impact of succinic anhydride on the properties of jute fiber/polypropylene biocomposites. Fibers and Polymers, 15(2), pp.307-314.

14. Khan, M.A., Ali, K.I. and Basu, S.C., (1993). IR studies of wood plastic composites. Journal of applied polymer science, 49(9), pp.1547-1551.

15. Poletto, M., Zattera, A.J. and Santana, R.M., (2012). Structural differences between wood species: evidence from chemical composition, FTIR spectroscopy, and thermogravimetric analysis. Journal of Applied Polymer Science, 126(S1), pp.E337-E344.

16. Tolvaj, L. and Faix, O., (1995). Artificial ageing of wood monitored by DRIFT spectroscopy and CIE L* a* b* color measurements. 1. Effect of UV light. Walter de Gruyter, Berlin/New York.

17. Luna, M.L., et al., (2012). Characterization of Schinopsis haenkeana wood decayed by Phellinus chaquensis (Basidiomycota, Hymenochaetales). IAWA Journal, 33(1), pp.91-104.

18. Da Silva, I.L.A., et al. (2016). Characterization by Fourier Transform Infrared (FTIR) Analysis for Natural Jute Fiber. in Materials Science Forum. Trans Tech Publ.

19. Popescu, C.-M., et al., (2007). Spectral Characterization of Eucalyptus Wood, Applied Spectroscopy, 61(11), pp.1168-77.

20. Ahmed, A.S., et al., (2014). Impact of succinic anhydride on the properties of jute fiber/polypropylene biocomposites. Fibers and Polymers, 15(2), pp.307-314.

21. Islam, M.S., et al., (2012). Tropical wood polymer nanocomposite (WPNC): The impact of nanoclay on dynamic mechanical thermal properties. Composites Science and Technology, 72(16), pp.1995-2001.

22. Islam, M.S., et al., (2012). The effect of alkali pretreatment on mechanical and morphological properties of tropical wood polymer composites. Materials & Design, 33, pp.419-424.

23. Popescu, C.-M., et al., (2006). Degradation of lime wood painting supports II. Spectral characterisation. Cellulose Chemistry and Technology, 40(8), pp.649-658.

24. Olsson, A.-M. and L. Salmén, (2004). The association of water to cellulose and hemicellulose in paper examined by FTIR spectroscopy. Carbohydrate research, 339(4), pp.813-818.

25. Kizil, R., Irudayaraj, J. and Seetharaman, K., (2002). Characterization of Irradiated Starches by Using FT-Raman and FTIR Spectroscopy. Journal of Agricultural and Food Chemistry, 50(14), pp.3912-3918.

26. Prachayawarakorn, J., Sangnitidej, P. and Boonpasith, P., (2010). Properties of thermoplastic rice starch composites reinforced by cotton fiber or low-density polyethylene. Carbohydrate Polymers, 81(2), pp.425-433.

27. Kaewtatip, K. and Thongmee, J., (2012). Studies on the structure and properties of thermoplastic starch/luffa fiber composites. Materials & Design, 40, pp.314-318.

28. Basak, R. K., et al., (1993). Thermal Properties of Jute Constituents and Flame Retardant Jute Fabrics. Textile Research Journal, 63(11), pp. 658-666.

29. Khan, J.A., Khan, M.A., and Islam, R., (2013). Mechanical, thermal and degradation properties of jute fabric–reinforced polypropylene composites: effect of potassium permanganate as oxidizing agent. Polymer Composites, 34(5), pp.671-680.

30. Raabe, J., et al., (2015). Biocomposite of cassava starch reinforced with cellulose pulp fibers modified with deposition of silica (SiO2) nanoparticles. Journal of Nanomaterials,. 2015.

31. Kaushik, A., Singh, M. and Verma, G., (2010). Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydrate Polymers, 82(2), pp.337-345.
Tekstil ve Mühendis-Cover
  • ISSN: 1300-7599
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1987
  • Yayıncı: TMMOB Tekstil Mühendisleri Odası
Sayıdaki Diğer Makaleler

POLYESTER/GRAFEN NANOTOZ (GN P) BASINÇ LI GİYSİLERİN SE REBRAL PALSİ (SP ) REHA BİLİTASYONU ÜZERİNE ET KİLERİNİN İNCELENMESİ

Nilüfer YILDIZ VARAN

Polyester/Grafen Nanotoz (GNP) Basınçlı Giysilerin Serebral Palsi (SP) Rehabilitasyonu Üzerine Etkilerinin İncelenmesi

Nilüfer YILDIZ VARAN

POLYES ER/GR PHENE NANOPOWDER (GNP) PRESSUR E G ARMEN TS AS A POTENTIAL USE FOR R EHABIL ITATION O F CEREBRAL P ALSY (CP)

Nilüfer YILDIZ VARAN

Akrilik İplikler ve Bu İpliklerden Üretilen Örme Kumaş Özelliklerine Bazı Üretim Parametrelerinin Etkisi

Esin SARIOĞLU, Elif GÜLTEKİN, Gizem KARAKAN GÜNAYDIN

Termoplastik Nişasta Esaslı Biyokompozitlerin Üretimi için Yeni Bir Yaklaşım

Hatice Aylin KARAHAN TOPRAKÇI, Ayşe TURGUT, Ozan TOPRAKÇI

AKRİLİK İPLİKLER VE BU İPLİKLERDEN ÜRETİLEN ÖRME KUMAŞ ÖZELLİKLERİNE BAZI ÜRETİM PARAMETRELERİNİN ETKİSİ

Esin SARIOĞLU, Elif GÜLTEKİN, Gizem KARAKAN GÜNAYDIN

A NOVEL APPROACH FOR FABRICATION OF THERMOPLASTIC STARCH BASED BIOCOMPOSITES

Hatice Aylin KARAHAN TOPRAKÇI, Aysel TURGUT, Ozan TOPRAKÇI

AHP VE TOPSIS YÖNTEMLERİ İLE TEDARİKÇİ SEÇİMİ: HAZIR GİYİM SEKTÖRÜNDE BİR UYGULAMA

Derya ÖZTÜRK

TERMOPLASTİK NİŞASTA ESASLI BİYOKOMPOZİTLERİN ÜRETİMİ İÇİN YENİ BİR YAKLAŞIM

Hatice Aylin KARAHAN TOPRAKÇI, Ayşe TURGUT, Ozan TOPRAKÇI

EFFECT OF SOME PROCESS PARAMETERS ON ACRYLIC YARNS AND KNITTED FABRICS MADE OF THOSE YARNS

Esin SARIOĞLU, Elif GÜLTEKİN, Gizem KARAKAN GÜNAYDIN