ELEKTRO ÇEKİM YÖNTEMİ İLE POLİETİLEN TEREFTALAT DOKU İSKELESİ ÜRETİMİ: KARAKTERİZASYONU VE IN VITRO ORTAMDA HÜCRE ÇOĞALMASINDAKİ POTANSİYELİ

Lif çapı ve yüzey gözenekliliği hücre tutunması ve çoğalmasında önemli bir rol oynamaktadır. Bu nedenle bu çalışmada, farklı lif çaplarına ve yüzey gözenekliliğine sahip polietilen tereftalat (PET) doku iskeleleri elektro çekim yöntemi ile farklı PET konsantrasyonuna sahip çözeltilerden (ağırlıkça %10,%15 ve %20) üretilmiştir. Ayrıca, üretilen yüzeylerin kalınlığının etkisi incelenmiştir. Doku iskelelerinin yüzeysel ve mekaniksel karakterizasyonu yapılmıştır. Elektro çekim yöntemi ile üretilen liflerin polimer konsantrasyonuna bağlı olarak 0.575 μm’den 2.825 μm’ye değişen aralıkta çaplara sahip olduğu görülmüştür. Temas açısı ölçümleri PET doku iskelelerinin süper hidrofobik yapıya sahip olduğunu göstermiştir. Karakterizasyon sonrası, PET doku iskeleleri üzerine fibroblast hücre ekimleri yapılmış ve farklı elektro çekim parametrelerinin hücre çoğalması üzerine etkisi araştırılmıştır. Fibroblast hücreleri küçük çaplara sahip liflerden oluşan yüzeyler üzerinde daha iyi çoğalmıştır. PET doku iskeleleri üzerine fibroblast hücre çoğalması davranışı incelendikten sonra, üretilmiş olan dokuz yüzeyden en küçük lif çapına sahip olan ve daha iyi mekanik özelliklere sahip olan iki yüzey seçilmiştir. Bu iki yüzey üzerine endotel ve keratinosit hücre ekimleri yapılmıştır. Endotel ve keratinosit hücrelerinin bu iki yüzey üzerindeki hücre tutunması ve çoğalması davranışları incelenmiştir.

FABRICATION OF ELECTROSPUN POLY (ETHYLENE TEREPHTHALATE) SCAFFOLDS: CHARACTERIZATION AND THEIR POTENTIAL ON CELL PROLIFERATION IN VITRO

Fiber diameter and fiber mat porosity play a key role on cell adhesion and proliferation. Therefore, in this study, poly(ethylene terephthalate) (PET) scaffolds consisting of fibers with different diameters and pore sizes were fabricated from solutions with different concentrations (10, 15 and 20% wt.) by electrospinning. Also, the effect of fiber mat thickness was investigated. The scaffolds were characterized in terms of surface and mechanical properties. The electrospun fibers had diameters ranging from 0.575 to 2.825 μm depending on the polymer concentration. Contact angle values showed that PET scaffolds had super hydrophobic structure. After characterization, fibroblast cells were cultured onto PET scaffolds and influence of different electrospinning parameters on cell proliferation was discussed. Fibroblast cells showed better proliferation on scaffolds consisting of smaller diameters. After evaluation of fibroblast cell proliferation on electrospun PET scaffolds, two different electrospun scaffolds were chosen: 1) scaffold with the smallest fiber diameter and 2) scaffold with better mechanical properties. Endothelial and keratinocyte cells were cultured on those two electrospun scaffolds. Cell adhesion and proliferation behavior of endothelial and keratinocyte cells on those scaffolds were investigated.

___

  • 1. Greiner,A., Wendorff, J. H. 2007, Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers, Angew. Chem. Int. Ed., 46, pp.5670 – 5703.
  • 2. Li, D, Xia, Y. 2004, Electrospinning of Nanofibers: Reinventing the Wheel?, Adv. Mater., 16 (14), pp.1151-1170.
  • 3. Khansari, S., Duzyer, S., Sinha-Ray, S., Hockenberger, A., Yarin, A.L., Pourdeyhimi, B. 2013, Two-Stage Desorption-Controlled Release of Fluorescent Dye and Vitamin from Solution-Blown and Electrospun Nanofiber Mats Containing Porogens, Mol. Pharmaceutics, 10(12), pp.4509–4526.
  • 4. Sill, T.J., Recum, H.A. 2008, Electrospinning:Applications in Drug Delivery and Tissue Engineering, Biomaterials, 29, pp.1989-2006.
  • 5. Pham, Q., Sharma, U., Mikos, A.G. 2006. Electrospinning of Polymeric Nanofibers for Tissue Engineering Applications: A Review, Tissue Engineering, 12 (5), pp.1197-1211.
  • 6. Heydarkhan-Hagvall, S., Schenke-Layland, K., Dhanasopon, A.P., Rofail, F., Smith, H., Wu, B.M., Shemin, R., Beygui, R.E. and MacLellan, W.R. 2008, Three-Dimensional Electrospun ECM-Based Hybrid Scaffolds for Cardiovascular Tissue Engineering, Biomaterials, 29(19), pp.2907–2914.
  • 7. Yang, F., Both, S.K., Yang, X., Walboomers, X.F., Jansen, J.A. 2009, Development of an Electrospun Nano-Apatite/PCL Composite Membrane for GTR/GBR Application, Acta Biomaterialia, 5(9), pp.3295–3304.
  • 8. Düzyer,Ş., Koç, S.K., Hockenberger, A., Evke, E., Kahveci, Z., Uğuz, A. 2013, Effects of Different Sterilization Methods on Polyester Surfaces, Tekstil ve Konfeksiyon, 23(4), pp.319-324.
  • 9. Santos G.N., Danac, A.C., Ocampo, J.P. 2003, In: Science and Technology II, e-Biology, by Rex Bookstore, Manila, Phillippines, pp.278-279.
  • 10. Zhu, G., Kremenakova, D., Wang, Y., Militky, J., 2015, Air Permeability of Polyester Nonwoven Fabrics, AUTEX Research Journal, 15(1), pp.8-12.
  • 11. Ma, Z., Kotaki, M., Yong, T., He, W., Ramakrishna, S. 2005, Surface Engineering of Electrospun Polyethylene Terephthalate (PET) Nanofibers Towards Development of a New Material for Blood Vessel Engineering, Biomaterials, 26, pp.2527-2536.
  • 12. Jeon H.J., Kim, J.S., Kim, T.G., Kim, J.H., Yu, W., Youk, J.H. 2008, Preparation of poly(e-caprolactone)-based polyurethane nanofibers containing silver nanoparticles, Applied Surface Science, 254, pp. 5886–5890.
  • 13. Vondran J. L., Sun, W., Schauer, C.L. 2008, Crosslinked, Electrospun Chitosan–Poly(ethylene oxide) Nanofiber Mats, Journal of Applied Polymer Science, 109, pp.968–975.
  • 14. Duzyer,Ş., Hockenberger, A., Uğuz, A., Evke, E., Kahveci, Z. 2013, Effect of Ethylene Oxide, Autoclave and Ultra Violet Sterilizations on Surface Topography of PET Electrospun Fibers, Uludağ University Journal of The Faculty of Engineering, 21(2), pp.201-218.
  • 15. Hsieh, Y. 2001, In Surface Characteristics of Fibers and Textiles; Pastore, C. M.; Kiekens, P., Eds.; Marcel Dekker: New York, p 33.
  • 16. Li, W.J., Laurencin, C.T., Caterson, E.J., Tuan, R.S., Ko, F.K. 2002, Electrospun Nanofibrous Structure: A Novel Scaffold for Tissue Engineering, Journal of Biomedical Materials Research Part A, 60 (4), pp. 613-621.
  • 17. Duzyer, S., Hockenberger, A., Zussman, E. 2011, Characterization of Solvent-Spun Polyester Nanofibers. Journal of Applied Polymer Science, 120(2), pp. 759-769.
  • 18. Zare, S., Zarei, M.A., Ghadimi, T., Fathi, F., Jalili, A., Hakhamaneshi, M.S. 2014, Isolation, Cultivation and Transfection of Human Keratinocytes, Cell Bio. Int., 38(4), pp.444–451.
  • 19. Strudwick, X.L., Lang, D.L., Smith, L.E., Cowin, A.J. 2015, Combination of Low Calcium with Y-27632 Rock Inhibitor Increases the Proliferative Capacity, Expansion Potential and Lifespan of Primary Human Keratinocytes while Retaining Their Capacity to Differentiate into Stratified Epidermis in a 3D Skin Model, PLOS ONE, pp.1-12.