ÇEVRESEL PARAMETRELERİN ELEKTROSPİN YÖNTEMİYLE ÜRETİLMİŞ POLİTRİMETİLEN TEREFTALAT LİFLERİNİN MORFOLOJİSİ ÜZERİNDEKİ ETKİLERİ

Bu çalışmada bağıl nemin ve ortam sıcaklığının elektrospin tekniğiyle üretilen politrimetilen tereftalat (PTT) liflerinin morfolojileri üzerindeki etkileri incelenmiştir. Bununla birlikte bu çevresel parametrelerin; birim yük, toplayıcı-iğne ucu arası mesafe ve debi gibi önemli proses parametreleriyle etkileşimleri de incelenmiştir. Çözücü olarak diklormetan (DCM) ve triflor asetikasit karışımı kullanılmıştır. Elektrospin yöntemiyle üretilen PTT liflerinin yüzey morfolojileri ve ortalama çaplarının analizi için alan emisyonlu taramalı elektron mikroskobu (FESEM) kullanılmıştır. Elde edilen sonuçlara göre incelenen her üç proses parametresi (birim yük, toplayıcı-iğne ucu arası mesafe ve debi) için hem bağıl nemin hem de sıcaklığın artması elektrospin tekniğiyle üretilen PTT liflerinin ortalama çaplarını azaltmaktadır. En yüksek azalma oranı 0.9 ml/sa debide bağıl nemin 30%’dan 70%’e çıkmasında görülmüştür. Tüm bağıl nem ve tüm sıcaklık değerleri için elektrospin tekniğiyle üretilen PTT liflerinin hepsinin dairesel yapıda, düzgün yüzeyli ve boncuksuz olduğu görülmüştür. 

EFFECT OF AMBIENT PARAMETERS ON MORPHOLOGY OF ELECTROSPUN POLY (TRIMETHYLENE TEREPHTHALATE) (PTT) FIBERS

In this study, the effect of relative humidity and temperature on the morphology of electrospun Poly(trimethylene terephthalate) (PTT) fibers is investigated. It is also examined the interaction between these ambient parameters and those of some important parameters such as charge density, tip to collector distance and flow rate. Dichloromethane (DCM) and trifluoroacetic acid (TFA) solvent mixture is used. Field emission scanning electron microscopy (FESEM) is used for determination of surface morphologies and average diameters of electrospun PTT fibers. The results show that average diameter of electrospun PTT fibers decreases with increasing of relative humidity and temperature values for all of the charge density, tip to collector distance and flow rate values. The highest rate of decrease is seen at 0.9 ml/h for increasing of RH from 30% to 70%. All of the obtained electrospun PTT fibers are circular shaped with smooth surface without bead formation for all RH and temperature values. 

___

  • 1. Traub H.L., Hirt P. and Herlinger H., 1995, “Mechanical Properties of Fibers Made of Polytrimethylene Terephthalate”, Chemical Fibers International, 45(2), 110–111.
  • 2. Pyda M., Boller A., Grebowicz J., Chuah H., Lebedev B.V, Wunderlich B., 1998, “Heat Capacity of Poly(trimethylene terephthalate)”, Journal of Polymer Science Part B: Polymer Physics, 36(14), 2499–2511.
  • 3. Kim K.J., Bae J.H. and Kim Y.H., 2001, “Infrared Spectroscopic Analysis of Poly(trimethylene terephthalate)”, Polymer, 42(3), 1023–1033.
  • 4. Kurian J.V., 2005, “A New Polymer Platform for the Future — Sorona® from Corn Derived 1,3-Propanediol”, Journal of Polymers and the Environment, 13(2), 159–167.
  • 5. Traub H.L., Hirt P., Herlinger H., Oppermann W. Angew, 1995, “Synthesis and Properties of Fiber-Grade Poly(trimethylene terephthalate)”, Die Angewandte Makromolekulare Chemie, 230(1), 179-187.
  • 6. Brown H.S. and Chuah H.H., 1997, “Texturing of Textile Filament Yarns Based on Poly(trimethylene terephthalate)”, Chemical Fibers International, 47(1), 72-74.
  • 7. Khil M.S., Kim H.Y., Kim M.S., Park S.Y. and Lee D.R., 2004, “Nanofibrous Mats of Poly(Trimethylene Terephthalate) via Electrospinning”, Polymer, 45(1), 295–301.
  • 8. 8 Wu D., Shi T., Yang T., Suna Y., Zhai L., Zhou W., Zhang M. and Zhang J., 2011, “Electrospinning of Poly(trimethylene terephthalate)/carbon Nanotube Composites”, European Polymer Journal, 47(3), 284–293.
  • 9. Li M., Wang D., Xiao R., Sun G., Zhao Q. and Li H., 2013, “A Novel High Flux Poly(trimethylene terephthalate) Nanofiber Membrane for Microfiltration Media”, Separation and Purification Technology, 116, 199–205.
  • 10. Li, C., Wang, J. and Zhang, B., 2012, “Direct Formation of "Artificial Wool" Nanofiber via Two-Spinneret Electrospinning”, Journal of Applied Polymer Science, 123(5), 2992-2995.
  • 11. Xing X., Wang Y., and Li B., 2008, “Nanofiber Drawing and Nano Device Assembly in Poly(trimethylene terephthalate)”, Optics Express, 16(14), 10815- 10822.
  • 12. Jin W.J., Jeon H.J., Kim J.H. and Youk J.H., 2007, “A Study on the Preparation of Poly(vinyl alcohol) Nanofibers Containing Silver Nanoparticles”, Synthetic Metals, 157(10-12), 454-459.
  • 13. Reneker D.H., Yarin A.L., Fong H. and Koombhongse S.J., 2000, “Bending Instability of Electrically Charged Liquid Jets of Polymer Solutions in Electrospinning”, Journal of Applied Physics, 87(9), 4531-4547.
  • 14. Wang X., Drew C., Lee S.H., Senecal K.J., Kumar J. and Samuelson L.A., 2002, “Electrospun Nanofibrous Membranes for Highly Sensitive Optical Sensors”, Nano Letters, 2(11), 1273-1275.
  • 15. Baumgarten P.K., 1971, “Electrostatic Spinning of Acrylic Microfibers”, Journal of Colloid and Interface Science, 36(1), 71-79.
  • 16. Doshi J. and Reneker D.H., 1995, “Electrospinning Process and Applications of Electrospun Fibers”, Journal of Electrostatics, 35(2-3), 151-160.
  • 17. Tan S.H., Inai R., Kotaki M. and Ramakrischna S., 2005, “Systematic Parameter Study for Ultra-Fine Fiber Fabrication via Electrospinning Process”, Polymer, 46(16), 6128-6134.
  • 18. De Schoenmaker B., Schueren L.V., Zugle R., Goethals A., Westbroek P., Kiekens P., Nyokong T. and Clerck K.D., 2013, “Effect of the Relative Humidity on the Fibre Morphology of Polyamide 4.6 and Polyamide 6.9 Nanofibres”, Journal of Materials Science, 48(4), 1746-1754.
  • 19. Yang Y., Jia Z., Li Q. and Guan Z., 2006, “Experimental Investigation of the Governing Parameters in the Electrospinning of Polyethylene Oxide Solution”, IEEE Transactions on Dielectrics and Electrical Insulation, 13(3), 580-585.
  • 20. Medeiros E.S., Mattoso L.H.C., Offeman R.D., Wood D.F. and Orts W.J., 2008, “Effect of Relative Humidity on the Morphology of Electrospun Polymer Fibers”, Canadian Journal of Chemistry, 86(6), 590-599.
  • 21. Casper C.L., Stephens J.S., Tassi N.G., Chase D.B. and Rabolt J.F., 2004, “Controlling Surface Morphology of Electrospun Polystyrene Fibers: Effect of Humidity and Molecular Weight in the Electrospinning Process”, Macromolecules, 37(2), 573-578.
  • 22. Tripatanasuwan S., Zhong Z. and Reneker D.H., 2007, “Effect of Evaporation and Solidification of the Charged Jet in Electrospinning of Poly(ethylene oxide) Aqueous Solution”, Polymer, 48(19), 5742-5746.
  • 23. Amiraliyan N., Nouri M. and Kish M.H., 2009, “Effects of Some Electrospinning Parameters on Morphology of Natural Silk-Based Nanofibers”, Journal of Applied Polymer Science, 113(1), 226-234.
  • 24. Huang F., Wei Q., Wang J., Cai Y. and Huang Y., 2008, “Effect of Temperature on Structure, Morphology and Crystallinity of PVDF Nanofibers via Electrospinning”, e-Polymers, 152.
  • 25. De Vrieze S., Van Camp T., Nelvig A., Hagstrom B., Westbroek P. and De Clerck K., 2009, “The Effect of Temperature and Humidity on Electrospinning”, Journal of Materials Science, 44(5), 1357-1362.
  • 26. Hardick O., Stevens B. and Bracewell D.G., 2011, “Nanofibre Fabrication in a Temperature and Humidity Controlled Environment for Improved Fibre Consistency”, Journal of Materials Science, 46(11), 3890-3898.
  • 27. İçoğlu, H.İ. and Oğulata, R.T., 2013, “Effect of Ambient Parameters on Morphology of Electrospun Polyetherimide (PEI) Fibers”, Tekstil ve Konfeksiyon, 23(4), 313-318.
  • 28. De Vrieze, S., De Schoenmaker, B., Ceylan, Ö., Depuydt, J., Landuyt, L.V., Rahier, H., Assche G.V. and De Clerck, K., 2011, “Morphologic Study of Steady State Electrospun Polyamide 6 Nanofibres”, Journal of Applied Polymer Science, 119(5), 2984–2990.  29. Cai, Y. and Gevelber, M., 2013, “The Effect of Relative Humidity and Evaporation Rate on Electrospinning: Fiber Diameter and Measurement for Control Implications”, Journal of Materials Science, 48(22), 7812–7826.
  • 30. Mit-Uppatham, C., Nithitanakul, M. and Supaphol P., 2004, “Ultrafine Electrospun Polyamide-6 Fibers: Effect of Solution Conditions on Morphology and Average Fiber Diameter”, Macromolecular Chemistry and Physics, 205(17), 2327-2338.
  • 31. Kirecci, A., Özkoç, Ü. and Içoğlu, H. İ., 2012, “Determination of Optimal Production Parameters for Polyacrylonitrile Nanofibers”, Journal of Applied Polymer Science, 124(6), 4961-4968.
  • 32. Oğulata, R.T. and İçoğlu, H.İ., 2015, “Interaction Between Effects of Ambient Parameters and Those of Other Important Parameters on Electrospinning of PEI/NMP Solution”, The Journal of the Textile Institute, 106(1), 57-66.