POLİMER YAPISININ ELEKTROÇEKİMLİ POLAMİD LİFLERİ ÜZERİNE ETKİSİ

Bu çalışmanın amacı, farklı molekül yapılarının elektroçekimli poliamid nanolifler üzerine etkisinin incelenmesidir. Poliamid 6 ile poliamid 6.6, konvansiyonel tekstil ürünlerinde yaygın olarak kullanılırken poliamid 4.6, mühendislik uygulamalarına uygun benzersiz özelliklere sahip bir polimerdir. Poliamid cipsleri formik asitte çözülmüş ve tek iğneli elektroçekim makinesi kullanılarak farklı konsantrasyonlarda çekim yapılmıştır. Elde edilen nanoliflerin yüzey özellikleri taramalı elektron mikroskobunda incelenmiş ve lif çapları ölçülmüştür. Isıl özellikler ise DSC ile belirlenmiştir. Yüzey gerilimi ve mekanik özellikler test edilmiştir. Çalışmada elde edilen veriler; nano ölçekte bu üç polimerin lif çapı, kopma mukavemeti, yüzey gerilimi ve ısıl karakterlerin karşılaştırılması için kullanılmıştır. Sonuç olarak poliamid 4.6’nın incelenen polimerler arasında nanolif üretme açısından en iyi yapı ve kristalinite değerlerine sahip poliamid olduğu tespit edilmiştir.

EFFECTS OF POLYMER STRUCTURE ON THE ELECTROSPUN POLYAMIDE NANOFIBERS

The aim of this research is to investigate the effects of different molecular structures on the polyamide electrospun nanofibers. Polyamide 6, polyamide 6.6 are widely used in conventional textiles and polyamide 4.6 is a unique polymer for its properties suitable for engineering applications. Polyamide pellets were dissolved in formic acid and electrospun in different concentrations using a single nozzle electrospinning machine. The surface properties of these nanofibers were inspected in SEM and fiber diameters were measured. Thermal inspections were conducted using DSC. Surface tension and mechanical properties were also investigated. The data obtained from the study were compared to evaluate the changes in the fiber diameter, tensile strength, surface tension and thermal characterization of these three polymers in nano scale. As a result, it was concluded that Polyamide 4.6 had the most superior structural and crystallinity properties to produce nanofibers among the three polyamides investigated.

___

  • 1. Athira K.S., Pallab S., Kaushik C., 2014, “Fabrication of Poly(Caprolactone) Nanofibers by Electrospinning”,Journal of Polymer and Biopolymer Physics Chemistry, Vol:2 (4), pp:62-66.
  • 2. Bhardwaj N., Kundu S.C., 2010, “Electrospinning: A fascinating fiber fabrication technique”, Biotechnology Advances , Vol:28, pp: 325–347.
  • 3. Huang Z.M., Zhang Y.Z., Kotaki M., Ramakrishna S., 2003, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites”, Composites Science and Technology, Vol:63, pp: 2223-2253.
  • 4. Adanur S., 1995, Wellington Sears Handbook of Industrial Textiles, ISBN 1-56676-340-1.pp.45.
  • 5. 5 Fried J.R., 2003, Polymer Science and Technology, Second Edition, ISBN 0-13-018168-4, pp:391.
  • 6. Bunsell A.R., Handbook of Tensile Properties of Textile and Technical Fibres, 2009, The Textile Institute, Woodhead Publishing in Textiles:Number 91, Woodhead Publishing ISBN 978-1-84569-387-9, p:.211.
  • 7. Baji A., Mai Y.W., Wong S.C., Abtahi M., Chen P., 2010, “Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties”, Composites Science and Technology , Vol:70,pp: 703–718.
  • 8. Schoenmaker B.., Schueren L.V., Ceylan Ö., Clerck K., 2012, “Electrospun Polyamide 4.6 Nanofibrous Nonwovens: Parameter Study and Characterization”, Journal of Nanomaterials, Article ID 860654, 9 pages.
  • 9. Suzuki A., Endo A., 1997, “Preparation of high modulus naylon 46 fibres by high-temperature zone-drawing”, Polymer, Vol:38, No:12, pp:3085-3089.
  • 10. http://web.mit.edu/5.32/www/Appendix_1_Qual_Instrumentation_03.pdf (09.11.2016)
  • 11. http://chemistry.oregonstate.edu/courses/ch361-464/ch362/irinterp.htm (09.11.2016)
  • 12. Thompson C.J., Chase G.G., Yarin A.L., Reneker D.H., 2007, “Effects of parameters on nanofiber diameter determined from electrospinning model”, Polymer, Vol: 48, pp:6913-6922.
  • 13. Dersch R., Liu T., Schaper A. K., Greiner A., Wendorff J. H., 2003, “Electrospun Nanofibers: Internal Structure and Intrinsic Orientation”, Journal of Polymer Science: Part A: Polymer Chemistry, Vol: 41, pp: 545–553.
  • 14. Bergshoef M.M, Vancso G.J., 1999, “Transparent Nanocomposites with Ultrathin, Electrospun Nylon-4,6 Fiber Reinforcement”, Advanced Materials, Vol: 11, No. 16, pp: 1362-1365.
Tekstil ve Konfeksiyon-Cover
  • ISSN: 1300-3356
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Ege Üniversitesi Tekstil ve Konfeksiyon Araştırma & Uygulama Merkezi