Crosstalk effect in a fabric circuit developed for multi-connection of sonar sensors

Bu çalışmanın amacı e-tekstil yapılarında meydana gelen diyafoni etkisini analiz etmektir. E-Tekstillerde, endüklenen sinyal, bozucu bir etki yaratmakta olup iletken iplikler arası sinyal diyafonisi oluşturmakta ve sinyal bütünlüğünü bozmaktadır. Bu çalışmada; sinyal diyafoni etkisini e-tekstil yapılarında analiz etmek için, e-tekstil yapısı öncelikle sonar sensörlerin çoklu bağlantı şekline göre iletken iplikler kullanılarak oluşturulmuştur. Sonrasında, 4 kHz’den 400 kHz’e kadar değişen aralıklardaki sinyaller farklı kombinasyonlarda (GS (Toprak sinyali - Verici sinyal), GSG gibi) iletim hattı olarak görev alan iletken ipliklerin üzerine uygulanmıştır. Son olarak da, iletim hattı çıktıları ve komşu hatlarda (1’den 6. iletken ipliğe kadar) meydana gelen sinyal diyafonisi ölçülmüş ve desibel cinsinden analiz edilmiştir. Sonuçlar, konfigürasyona bağlı olarak iletken iplikler arası mesafenin artmasıyla sinyal diyafonisinin azaldığını göstermiştir.

Sonar sensörlerin çoklu bağlantısı için geliştirilmiş bir kumaş devresinde diyafoni etkisi

The aim of this study is to analyze the crosstalk effect within e-textile structure. In e-textiles, induced signals acting as a noise source are resulting in a crosstalk and lack of signal integrity between conductive lines. In this study, in order to analyze crosstalk effect within e-textile circuit, e-textile structure was firstly developed according to multi connection of sonar sensors by using conductive yarns. Then, signals ranging from 4 kHz to 400 kHz were applied on conductive yarns used as transmission lines in different configurations like GS (Ground-Signal), GSG (Ground-Signal-Ground) etc. Finally, the outputs of transmission lines and crosstalk effect in neighboring lines (from 1st to 6th conductive yarn) were measured and analyzed in decibels. Results showed that due to the configuration as the distance between conductive yarn increases, crosstalk decreases.

___

  • 1. C.tang Huang, C.-lung Shen, C.-fa Tang, 2008, “A wearable yarn-based piezo-resistive sensor”, Sensors And Actuators, Vol. 141, pp. 396-403.
  • 2. Huang, C., Tang, C., Lee, M., 2008, “Parametric design of yarn-based piezoresistive sensors for smart textiles”, Sensors and Actuators A: Physical, Vol. 148, pp. 10-15.
  • 3. Cottet, D., Grzyb, J., Kirstein, T., 2003, “Electrical characterization of textile transmission lines”, IEEE Transactions on Advanced Packaging, Vol. 26, pp. 182-190.
  • 4. Wallace, G., Campbell, T. E., 2007, “Putting Function into Fashion: Organic Conducting Polymer Fibres and Textiles”, Fibers and Polymers, Vol. 8, pp. 135-142.
  • 5. Ouyang, Y. and Chappell, W.J., 2008, “High Frequency Properties of Electro-Textiles for Wearable Antenna Applications”, IEEE Transactions on Antennas and Propagation, Vol. 56, pp. 381-389.
  • 6. Toivola, M. Ferenets, P. Lund, 2009, “Photovoltaic fiber”, Thin Solid Films, Vol. 517, pp. 2799-2802.
  • 7. Wang, C. Too, and Wallace, G., 2005 “A highly flexible polymer fibre battery”, Journal of Power Sources, Vol. 150, pp. 223-228.
  • 8. Maccioni, E., Orgiu, P., Cosseddu, S., 2006, “The textile transistor: a perspective for distributed, wearable networks of sensor devices”, 3rd IEEE/EMBS International Summer School on Medical Devices and Biosensors, pp. 5-7.
  • 9. Lee, J.B. and Subramanian, V., 2005, “Weave patterned organic transistors on fiber for E-textiles”, Electron Devices, IEEE Transactions, Vol.52 (2), pp. 269-275
  • 10. Louis K. S., Luciano L., Grant M. (eds) 2006. “Electronic design automation for integrated circuits handbook”. Boca Raton, Florida: CRC/Taylor & Francis. ISBN 0-8493-3096-3.
  • 11. Dhawan, A., Tushar K. ,Ghosh, S., , 2004, “Woven Fabric-Based Electrical Circuits: Part II: Yarn and Fabric Structures to Reduce Crosstalk Noise in Woven Fabric-Based Circuits”, Textile Research Journal , Vol. 74(11), pp. 955-960.
  • 12. Locher, 2008, “Enabling Technologies for Electrical Circuits on a Woven,” Textile Research Journal, Vol.78( 7), 583-594.
  • 13. Puurtinen, M.M., Komulainen, S. M., Kauppinen, P. K., 2006, “Measurement of noise and impedance of dry and wet textile electrodes, and textile electrodes with hydrogel”, Proceedings of the 28th IEEE EMBS Annual International Conference, New York City, USA, Aug 30-Sept 3.
  • 14. Kim, S., Leonhardt, S., Zimmermann, N., 2008, “Influence of contact pressure and moisture on the signal quality of a newly developed textile ECG sensor shirt”, Proceedings of the 5th International Workshop on Wearable and Implantable Body Sensor Networks, China. Jun 1-3, pp. 256-259
  • 15. Maxbotix Inc., (2010). LV-Maxsonar ®-EZ3™ Data Sheet, avalaible at www.maxbotix.com, accessed February 2011
  • 16. Kursun Bahadir, S., Koncar, V., Kalaoglu, F., Cristian, I., Thomassey, S. 2011, "Assessing the Signal Quality of Ultrasonic Sensor on Different Conductive Yarns used as Transmission Lines", Fibres & Textiles in Eastern Europe, Vol. 19 (5) 88, pp. 75-81
  • 17. Bahadir Kursun, S., Koncar, V., Kalaoglu, F., "Multi-Connection of Miniaturized Sonar Sensors onto Textile Structure for Obstacle Detection", 06/2011, AUTEX 2011, Mulhouse, FRANCE
Tekstil ve Konfeksiyon-Cover
  • ISSN: 1300-3356
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Ege Üniversitesi Tekstil ve Konfeksiyon Araştırma & Uygulama Merkezi