Synthesis and Characterization of Polyvinylimidazole and Investigation of its Antipilling Effect on Different Fabrics

Pilling is one of the biggest problems for all types of fabrics in textile industry. To improve pilling values of the fabrics, some methods have been reported. One of the most useful methods is chemical finishing. In this study, this method have been used. A key differentiator of this study is the fact that we synthesized the polymer employed as an anti-pilling agent ourselves and does not negatively affect the hydrophilicity and brightness parameters of fabrics, as most anti-pilling chemicals do. As an anti-pilling polymer, we have synthesized polyvinylimidazole (PVIM) and have applied this polymer to different fabrics for the aim of reducing pilling tendency of these fabrics. We have achieved nearly 1.5-2 pilling grades of improvement for different fabrics and generally obtained pilling grade: 4.5-5.0, means no pills on fabric surface. Also, it has been proven that PVIM can be used as an anti-pilling agent without negative effects on fabrics in terms of hydrophilicity, brightness and handle. To market PVIM under Rudolf-Duraner product list, we defined this polymer: EPW 18042.

___

  • Reference1 Furferi R, Governi L, Volpe Y. 2015. Machine vision-based pilling assessment. Journal of Engineered Fibers and Fabrics 15(10), 3.
  • Reference 2 Tomasino C. 1992. Chemistry & Technology of Fabric Preparation & Finishing, Department of Textile Engineering, Chemistry & Science College of Textiles North Carolina State University, North Carolina.
  • Reference 3 Man L, Raymand W. 2009. Mechanisms of pilling formation and reduction by attrition methods. The Hong Kong Polytechnic University Institute of Textiles & Clothing, Hong Kong.
  • Reference 4 Li L, Jia G, Zhou W. 2009. Effect of yarn properties on the pilling of cashmere treated fabric. Fibres &Textiles in Eastern Europe 17, 76-79.
  • Reference 5 Candan C. 2000. Factors affecting the pilling performance of knitted wool fabrics. Tr. J Engin. Environ. Sci. 24, 35-44.
  • Reference 6 Gintis D, Mead E. 1959. The Mechanism of Pilling. Text. Res. J. 29, 578-585.
  • Reference 7 Beltran R, Wang L, Wang X. 2006. Measuring the influence of fibre-to-fabric properties on the pilling of wool fabrics, Journal of Textile Institude 97(3), 197-204.
  • Reference 8 Sivakumar VR, Pillay KPR. 1981. Study of pilling in polyester/cotton blended fabrics. Ind. J. Text. Res. 6, 22.
  • Reference 9 Kayseri GO, Bozdoğan F, Hes L. 2010. Performance properties of regenerated cellulose fibers. Tekstil ve Konfeksiyon 20(3), 208-212.
  • Reference 10 Candan C, Nergis UB, Iridag Y. 2000. Performance of open-end and ring spun yarns in weft knitted fabrics. Text. Res. J. 70(2), 177-181.
  • Reference 11 Oğlakçıoğlu N, Marmaralı A. 2007. Thermal comfort properties of some knitted structures. Fibres&Textiles in Eastern Europe 15(5-6), 94-96.
  • Reference 12 Kahraman B. 2006. Örme kumaşlarda boncuklanma nedenlerinin incelenmesi (Master’s thesis). Marmara Üniversitesi Fen Bilimleri Enstitüsü Tekstil Eğitimi Anabilim Dalı, İstanbul.
  • Reference 13 Ukponmwan JO, Mukhopadhyay A, Chatterjee KN. 1998. Pilling. Text. Prog. 28, 40.
  • Reference 14 Kowalczyk D, Brzezinski S, Kaminska I. 2015. Multifunctional bioactive and improving the performance durability nanocoatings for finishing PET/CO woven fabrics by the solgel method. Journal of Alloys and Compounds 649, 387-393.
  • Reference 15 Hashemikia S, Montazer M. 2012. Sodium hypophosphite and nano TiO2 inorganic catalysts along with citric acid on textile producing multi-functional properties. Applied Catalysis A: General 417-418, 200-208.
  • Reference 16 Kulyk I, Scapinello M, Stefan M. 2012. Generation of nano roughness on fibrous materials by atmospheric plasma, 12th High-Tech Plasma Processes Conference (HTPP-12), Journal of Physics. https://doi.org/:10.1088/1742-6596/406/1/012015
  • Reference 17 Montazer M, Mazaheri F, Khosravian SH, Azimi M, Bameni M, Sadeghi AH. 2011. Application of resins and crosslinking agents on fiber blend fabric to reduce pilling performance. Optimized by Response Surface Methodology. Society of Plastics Engineers, Journal of Vınyl&Additive Technology. https://doi.org/:10.1002/vnl.20274
  • Reference 18 Tusief MQ, Mahmood N, Amin N, Saleem M. 2012. Fabric tensile strength as affected by different anti-pilling agents at various concentration and ph levels. Journal of The Chemical Society of Pakistan 34(1), 53-57.
  • Reference 19 Özgüney AT. 2016. 2016 Investigating the effects of different softeners on pilling properties and durability to washing of bamboo knitted fabrics. Tekstil ve Konfeksiyon 26(3)
  • Reference 20 Bahtiyari MI, Duran K, Körlü AE. 2010. Usage of commercial cellulases in biopolishing of viscose fabrics. Tekstil ve Konfeksiyon 20(1), 57-54.
  • Reference 21 Ala DM, Bakıcı GG, Abdulvahitoglu A. 2017. Investigation of thickness, air permeability and pilling properties of single jersey fabrics. Ç.Ü. Müh. Mim. Fak. Dergisi 32, 3.
  • Reference 22 Mavruz S, Oğulata R. 2009. Biyoparlatma uygulanmış örme kumaşlara tekrarlı (çoklu) yıkamaların etkisinin incelenmesi. Tekstil ve Konfeksiyon. 3, 224-230.
  • Reference 23 Ming Yu M, Wang Z, Lv M, Hao R, Zhao R, Qi L, Liu S, Yu C, Zhang B, Fan C, Li J. 2016. Antisuperbug Cotton Fabric with Excellent Laundering Durability. ACS Appl. Mater. Interfaces 8, 19866-19871.
  • Reference 24 Bui HM, Enhrhardt A, Bechtold T. 2008. Pilling in cellulosic fabrics, part 2: A study on kinetics of pilling in alkali-treated lyocell fabrics. Journal of Applied Polymer Science 109, 3696-3703.
  • Reference 25 Kertmen M, Marmaralı A. 2019. Örme Kumaşlarda Sürdürebilirlik için Boncuklanma ve Patlama Mukavemet Özelliklerinin Değerlendirilmesi. 17th International The Recent Progress Symposium On Textile Technology And Chemistry, Bursa.
  • Reference 26 Chlistunoff J, Sansinena JM. 2014. Effects of Axial Coordination of the Metal Center on the Activity of Iron Tetraphenylporphyrin as a Nonprecious Catalyst for Oxygen Reduction. Phys. Chem. C. 118, 19139-19149.
  • Reference 27 Lia X, Goha SH, Laia YH, Weeb ATS. 2001. Miscibility and interactions in blends of carboxyl-containing polysiloxane with poly(1-vinylimidazole). Polymer 42, 5463-5469.
  • Reference 28 Zhang J, Wang X. 2008. Objective pilling evaluation of wool fabrics. Textile Research Journal 77(12), 929–936. https://doi.org/10.1177/0040517507083522
  • Reference 29 Furferi R, Carfagni M, Governi L, Volpe Y, Bogani P. 2014. Towards Automated and Objective Assessment of Fabric Pilling. 2 Int. J. Adv. Robot Syst. 11, 171. https://doi.org/10.5772/59026
  • Reference 30 Wang XY, Gong RH, Dong Z, Porat I. 2007. Abrasion resistance of thermally bonded 3D nonwoven fabrics. Science Direct, Wear 262, 424–431.
  • Reference 31 Dalbaşı ES, Kayseri GÖ. 2015. Research about the effect of the anti-pilling treatments on different structured cotton knitted fabrics. Tekstil ve Konfeksiyon 25, 54-60.
  • Reference 32 Nihat C, Değirmenci Z, Kaynak HK. 2010. Effect of nano-silicone softener on abrasion and pilling resistance and color fastness of knitted fabrics. Tekstil ve Konfeksiyon 20(1), 41-47.
  • Reference 33 Tusief MQ, Mahmood N, Saleem M. 2012. Effect of different anti-pilling agents to reduce pilling on polyester/cotton fabric. Journal Of The Chemical Society Of Pakistan 34(1), 53-57.
  • Reference 34 Kertmen M. 2019. Örme kumaşlarda ilmeklenme sorunu ve çözüm yollarinin araştırılması (Master’s thesis). Ege Üniversitesi, İzmir.
  • Reference 35 Telli A. 2019. An image processing research consistent with standard photographs to determine pilling grade of woven fabrics. Tekstil ve Konfeksiyon 29(1), 268-276.
  • Reference 36 Guo S, Wan W, Chen C, Chen WH. 2013. Thermal decomposition kinetic evaluation and its thermal hazards prediction of AIBN. J Therm Anal Calorim. 113, 1169-76.
  • Reference 37 Tekin N, Kadıncı E, Demirbaş Ö, Alkan M, Kara A, Doğan M. 2006. Surface properties of poly(vinylimidazole)-adsorbed expanded perlite. Micropor. Mesopor. Mater. 93, 125-133.
  • Reference 38 Böhmer M, Heesterbeek WHA, Deratani A, Renard E. 1995. Adsorption of partially quarternied poly(vinylimidazoles) onto SiO2 and Y2O3. Colloids Surf. A: Physicochem. Eng. Aspects. 99, 53-64.
  • Reference 39 Pekel N, Güven O. 1999. Investigation of complex formation between poly(N-vinyl imidazole) and various metal ions using the molar ratio method. Colloid Polym. Sci. 277, 570-573.
  • Reference 40 Pekel N, Şahiner N, Güven O, Rzaev ZMO. 2001. Synthesis and characterization of N-vinylimidazole–ethyl methacrylate copolymers and determination of monomer reactivity ratios. European Polymer Journal 37(12), 2443-2451.
  • Reference 41 Uzluk E. 2008. (Master’s thesis). Synthesis and characterization of some polymers and investigation of properties.
  • Reference 42 Araki M, Kato K, Koyanagi T, Machida S. 1977. Spontaneous polymerization of maleic anhydride by imidazole derivatives. Journal of Macromoleculer Science-Chemistry. A11(5), 1039-1052.