Türkiye’nin Batı Bölgelerinden Toplanmış Hypericum perforatum L. Aksesyonlarının Çekirdek DNA İçerikleri ile Ploidi Düzeylerinin Belirlenmesi

Hypericum perforatum L. (sarı kantaron) depresyon ve kanser gibi rahatsızlıkların tedavisinde kullanılan, farmasötik açıdan önemli bileşikler üreten tıbbi bir bitkidir. H. perforatum, bitkilerin genetik yapısını ve kimyasal kompozisyonunu etkileyen birden fazla üreme mekanizması ile üreme yeteneğine sahip fakültatif apomiktik bir türdür. Bu çalışmanın amacı; Türkiye’nin doğal florasında bulunan H. perforatum L. aksesyonlarının çekirdek DNA içeriklerini ve ploidi düzeylerini belirlemektir. Çalışmada, Türkiye’nin 23 farklı lokasyonundan toplanan 39 Hypericum perforatum L. aksesyonuna ait tohumlar materyal olarak kullanılmıştır. Flow sitometri yöntemi ile H. perforatum aksesyonlarının herbiri için 3 farklı fide üzerinde çekirdek DNA analizi yapılmıştır. Flow sitometri analiz sonuçlarına göre aksesyonların çekirdek DNA içerikleri 0.8-2.57 pg 2C-1 arasında değişmiştir. Aksesyonların çekirdek DNA içerikleri arasındaki farklılıklar istatistiki açıdan (P

Determination of Nuclear DNA Content and Ploidy of Hypericum perforatum L. Accessions Collected from Western Turkey

Hypericum perforatum L. (St John’s Wort) is a medicinal plant that produces pharmaceutically important compounds with antidepressive and anticancer activities. H. perforatum is a facultative apomictic species as it has the ability to reproduce with multiple reproduction mechanisms affecting genetic structure and chemical composition of the plants. The objective of this study was to determine nuclear DNA contents and ploidy levels of H. perforatum L. plants growing naturally in the flora of Turkey. The seeds of 39 Hypericum perforatum L. accessions collected from 23 different locations in Turkey were used in the study. Nuclear DNA contents of three different seedlings for each of the 39 H. perforatum accessions were determined using flow cytometry. Based on the results of flow cytometric analysis, nuclear DNA contents of the accessions varied between 0.8-2.57 pg 2C-1. Nuclear DNA content differences observed among H. perforatum accessions were statistically significant (P

___

  • Zeybek N & Zeybek U (1994). Pharmaceutical Botany. Egean University Press. No: 2, İzmir, Turkey
  • Vogel K P, Arumuganathan K & Jensen K B (1999). Nuclear DNA content of perennial grasses of the Triticeae. Crop Science 39: 661-667
  • Tuna M, Khadka D K & Shrestha M K (2004). Characterization of natural orchardgrass (Dactylis glomerata L.) populations of the Thrace Region of Turkey based on ploidy and DNA polymorphisms. Euphytica 135: 39-46
  • Tuna M, Vogel K P, Arumuganathan K & Kulvinder S G (2001). DNA content and ploidy determination of bromegrass germplasm accessions by flow cytometry. Crop Science 5: 1629-1634
  • Tokur S (1988). Studies on the ecology of some Hypericum species. Turkish Journal of Botany 12: 323-331
  • Smarda P & Bures P (2010). Understanding intraspecific variation in genome size in plants. Preslia 82: 41-61
  • Smarda P S & Bures P (2006). Intraspecific DNA content variability in Festuca pallens on different geographical scales and ploidy levels. Annals of Botany 98: 665-678
  • Singh K P, Raina S N & Singh A K (1996). Variation in chromosomal DNA associated with the evolution of Arachis species. Genome 39: 890-897
  • Robson N K B (2002). Studies in the genus Hypericum L. (Guttiferae) 4(2). Section 9. Hypericum senso lato (part 2): subsection 1. Hypericum series 1. Hypericum. Bulletins of the Natural History Museum: Botany Series 32: 61-123
  • Robson N K B (1977). Studies in the genus Hypericum L. (Guttiferae) 1. Infrageneric classification. Bulletin of the British Museum Natural History Botany Series 5: 291-355
  • Reeves G, Francis D, Davies M S, Rogers H J & Hodkinson T R (1998). Genome size is negatively correlated with altitude in natural populations of Dactylis polygama. Annals of Botany 82: 99-105
  • Qu L, Widrlechner M P & Rigby S M (2010). Analysis of breeding systems ploidy and the role of hexaploidsin three Hypericum perforatum L. populations. Industrial Crops and Products 32: 1-6
  • Pecinka A, Suchánková P, Lysak M A, Trávníček B & Doležel J (2006). Nuclear DNA content variation among Central European Koeleria taxa. Annals of Botany 98: 117-122
  • Ozkan H, Tuna M, Kilian B, Mori N & Ohta S (2010). Genome size variation in diploid and tetraploid wild wheats. AoB Plants plq015, doi: 10.1093/aobpla/ plq015
  • Noack K L (1939). Uber hypericum-kreuzungen VI. Fortpflanzungsver-haltnisse und bastarde von Hypericum perforatum L. Zeitschrift Induktive Abstammungsund Vererbungslehre 76: 569-601
  • Nielsen N (1924). Chromosome numbers in the genus Hypericum. Hereditas 5: 378-382
  • Matzk F, Meister A, Brutovska R & Schubert I (2001). Reconstruction of reproductive diversity in Hypericum perforatum L. opens novel strategiesto ménage apomixis. The Plant Journal 26: 275-282
  • Martonfi P, Brutovska R, Cellarova E & Repcak M (1996). Apomixis and hybridity in Hypericum perforatum. Folia Geobotanica Phytotaxonomy 31: 389-396
  • Koch M A, Scheriau C, Betzin A, Hohmann N & Sharbel T F (2013). Evolution of cryptic gene pools in Hypericum perforatum: The influence of reproductive system and gene flow. Annals of Botany 111: 1083-1094
  • Koch M & Sharbel T (2011). Evolutionary history of Hypericum perforatum L. PhD Thesis, RupertoCarola University, Germany
  • Greilhuber J (2005). Intraspecific variation in genome size in angiosperms: identifying its existence. Annals of Botany 95: 91-98 Heslop-Harrison J S (1995). Flow cytometry and genome analysis. Probe 5: 14-17
  • Gregory T R (2005). The C-value enigma in plants and animals: A review of parallels and an appeal for partnership. Annals of Botany 95: 133-146
  • Graham N J, Nickell C D & Rayburn A L (1994). Relationship between genome size and maturity group in soybean. Theoretical and Applied Genetics 88: 429-432
  • Gartner M, Muller T, Simon J C, Giannis A & Sleeman J P (2005). Aristoforin, a novel stable derivative of hyperforin, is a potent anticancer agent. Chembiochem 6: 171-177
  • Davis P H (1988). Flora of Turkey and the East Aegean Islands. Edinburgh University Press, Edinburgh, UK Dolezel J & Bartos J (2005). Plant DNA flow cytometry and estimation of nuclear genome size. Annals of Botany 95: 99-110
  • Çırak C, Ayan A & Kevseroğlu K (2004). The effects of light and some presoaking treatments on germination rate of St. John’ worth (Hypericum perforatum L.) seeds. Pakistan Journal of Biological Sciences 7: 182-186
  • Cellarova E, Bruňáková R, Bruňáková K, Daxnerová Z & Weigel R C (1997). Correlation between hypericin content and the ploidy of somaclones of Hypericum perforatum L. Acta Biotechnologica 17: 83-90
  • Cavallini A, Lucia N, Cionini G & Gennai D (1993). Nuclear DNA variability within Pisum sativum (Leguminosae): Nucleotypic effects on plant growth. Heredity 70: 561-565
  • Brutovska R, Cellarova E & Dolezel J (1998). Cytogenetic variability of in vitro regenerated Hypericum perforatum L. plants and their seed progenies. Plant Science 133: 221-229
  • Bennett M D, Johnston J S, Hodnett G L & Price H J (2000). Allium cepa L. cultivars from four continents compared by flow cytometry show nuclear DNA constanc. Annals of Botany 85: 351-357
  • Bennett M D & Smith J B (1976). Nuclear DNA amounts in angiosperms. Philosophical Transactions of the Royal Society of London B. 274: 227-274
  • Barcaccia G, Arzenton F, Sharbel T F, Varotto S, Parrini P & Lucchin M (2006). Genetic diversity and reproductive biology in ecotypes of the facultative apomict Hypericum perforatum L. Heredity 96: 322-334
  • Arumuganathan K & Earle E D (1991). Estimation of nuclear DNA content of plants by flow cytometry. Plant Molecular Biology Reporter 9: 229-233
  • Alan A R, Murch S J & Saxena P K (2015). Evaluation of ploidy variations in Hypericum perforatum L. (St. John’s wort) germplasm from seeds, in vitro germplasm collection, and regenerants from floral cultures. In Vitro Cellular & Developmental BiologyPlant 51: 452-462