Bazı Hibrit Domates Çeşitlerinin Biyokimyasal Parametrelerinin ve Uçucu Bileşenlerinin Karşılaştırılması

Meyve ve sebzelerin kalite değerlendirmelerinde genellikle şekil, renk, irilik ve verim gibi morfolojik ve kalite parametreleri dikkate alınmaktadır. Bununla birlikte son zamanlarda tüketicilerin yüksek oranda biyoaktif bileşenlere, minerallere ve kabul edilebilir aromaya sahip gıdalara olan ilgisi artmıştır. Hem düzgün morfolojik özelliklere sahip hem de yüksek oranda biyoaktif bileşenlere sahip meyve ve sebzelerin yetiştirilmesine katkıda bulunmak amacıyla Türkiye’de yetiştirilen iki hibrit domates çeşidinin (Ege F1 ve Alida F1) biyokimyasal parametreleri (fenolik bileşenler, askorbik asit, β-karoten, likopen, mineraller) ve uçucu bileşenleri açısından karşılaştırılmıştır. Alida F1 yüksek oranda likopen ve mineral değerlerine sahipken, Ege F1 fenolik bileşenler ve uçucu bileşenleri açısından dikkate değer bulunmuştur. Her iki çeşidin askorbik asit içerikleri 7.13-11.94 mg 100 g-1 fw arasında değişmiş ve Ege hibritinin askorbik asit değeri kayda değer bulunmuştur. Klorojenik asit, kafeik asit, p-kumarik asit, rutin ve trans ferulik asit her iki çeşitte bulunan ana fenolik bileşenlerdir. Potasyum (K) (% 4.09), her iki hibrit domateste bulunan baskın mineraldir. Hekzenal, test edilen uçucu aroma bileşenleri arasında en yüksek konsantrasyona sahip bileşen olup bunu 2-hekenal, (6-methyl)-trans5-Hepten-2-one izlemiştir. İki çeşidin de biyokimyasal parametrelerinin ve uçucu aroma bileşenlerinin karşılaştırılması, yetiştiricilere istenen özelliklere ve besinsel değere sahip domateslerin yetiştirilmesi ve çeşit seçimine fırsat verecektir.

Comparison of Biochemical Parameters and Volatile Compounds of Some Hybrid Tomato Varieties

Evaluating morphological and quality parameters such as shape, colour, size and yield are all common practices when assessing the quality of fruit and vegetables. In recent times, however, consumer interest in foods with high levels of bioactive components, high mineral content and acceptable flavor has increased considerably. In order to make a contribution to the production of fruit and vegetables with excellent morphological properties and high levels of bioactive compounds, two different hybrid tomato varieties (Ege F1 and Alida F1) cultivated in Turkey were compared in terms of their biochemical parameters (phenolic compounds, ascorbic acid, β-carotene, lycopene, minerals) and volatiles. While the Alida F1 was rated the highest for lycopene and mineral values, the Ege F1 was outstanding in terms of phenolic compounds and volatiles. Ascorbic acid content of both cultivars ranged from 7.13 to 11.94 mg 100 g-1 fw. The quantity in the Ege hybrid was remarkable. Chlorogenic acid, caffeic acid, p-coumaric acid, rutin and trans ferulic acid were the main phenolic compounds in both cultivars. Potassium (K) (4.09%) was the most predominant mineral in both hybrid tomatoes. Hexenal had the highest concentration value among tested volatiles followed by 2-hexenal, (6-methyl)-trans5-Hepten-2-one. Comparison of biochemical parameters and volatiles of both varieties will give breeders an opportunity to choose the desired traits of tomatoes to cultivate for both taste and nutritional value.

___

  • Yilmaz E (2001). The chemistry of fresh tomato flavor. Turkish Journal of Agriculture & Forestry 25: 149- 155
  • Wen D, Li C, Di H, Liao Y & Liu H (2005). A universal HPLC method for the determination of phenolic acids in compound herbal medicines. Journal of Agricultural and Food Chemistry 53: 6624-6629
  • Vogel J T, Tieman D M, Sims C A, Odabasi A Z, Clark D G & Kleea H J (2010). Carotenoid content impacts flavor acceptability in tomato (Solanum lycopersicum). Journal of the Sciences of Food and Agriculture 90: 2233-2240
  • Viljanen K, Lille M, Heinio R L & Buchert J (2011). Effect of high-pressure processing on volatile composition and odour of cherry tomato purée. Food Chemistry 129: 1759-1765
  • Singh S, Singh J & Rai M (2008). Nutritional attributes of processed tomatoes. In Symposium on Food Technology for Better Nutrition. Comprehensive Review in Food Science and Food Safety 7(4): 320- 396
  • Sawant L, Prabhakar B & Pandita N (2010). Quantitative HPLC analysis of ascorbic acid and gallic acid in Phyllanthus emblica. Journal of Analytical & Bioanalytical Techniques Doi: 10.4172/2155- 9872.1000111
  • Sánchez-Rodríguez E, Leyva R, Constán-Aguilar C, Romero L & Ruiz J M (2012). Grafting under water stress in tomato cherry: improving the fruit yield and quality. Annals of Appled Biology 161: 302-312
  • Ristovska N & Mirčeska V B (2011). Quality characterization and processing of some tomato varieties. Journal of Habitat Engineering and Design 61: 261-265
  • Ragab A S, Van Fleet J, Jankowski B, Park J H & Bobzin S C (2006). Detection and quantitation of resveratrol in tomato fruit (Lycopersicon esculentum Mill.). Journal of Agricultural and Food Chemistry 54: 7175-7179
  • Radzevičius A, Karklelienė R, Viškelis P, Bobinas Č, Bobinaitė R & Sakalauskienė S (2009). Tomato (Lycopersicon esculentum Mill.) Fruit quality and physiological parameters at different ripening stages of Lithuanian cultivars. Agronomy Research 7: 712- 718
  • Palafox-Carlos H, Ayala-Zavala J F & GonzálezAguilar G A (2011). The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants. Journal of Food Science 76(1): 6-15
  • Olives Barba A I, Ca´mara Hurtado M, Sa´nchez Mata M C, Ferna´ndez Ruiz V & Sa´enz de Tejada M L (2006). Application of a UV-vis detection-HPLC method for a rapid determination of lycopene and β carotene in vegetables. Food Chemistry 95: 328-336
  • Nour V, Trandafir I & Ionica M E (2013). Antioxidant compounds, mineral content and antioxidant activity of several tomato cultivars grown in southwestern Romania. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 41: 136-142
  • Mu-Lin L, Bo-Di H & Ke-Nuo P (2007). Quantitative analysis of lycopene from tomato and ıts processed products by C18-HPLC-PDA. Food Science 28: 453- 456
  • Martinez-Valverde I, Periago M J, Provan G & Chesson A (2002). Phenolic compounds, lycopene and Antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). Journal of the Sciences of Food and Agriculture 82: 323-330
  • Leonardi C, Ambrosino P, Esposito F & Fogliano V (2000). Antioxidative activity and carotenoid and tomatine contents in different typologies of fresh consumption tomatoes. Journal of Agricultural and Food Chemistry 48: 4723-4727
  • Heredia A, Peinado I, Rosa E, Andrés A & Escriche I (2012). Volatile profile of dehydrated cherry tomato: ınfluences of osmotic pre-treatment and microwave power. Food Chemistry 130: 889-895
  • Harmanescu M (2007). Metals contents of tomatoes cultivated ın different conditions. Journal of Agroalimentary Processes and Technologies 13: 169- 174
  • Guler Z & Sekerli Y E (2013). Distribution of volatile compounds in organic tomato (Lycopersicon esculentum) at different ripening stages. Academic Food Journal 11: 6-13
  • Gómez E & Ledbetter C A (1997). Development of volatile compounds during fruit maturation: characterization of apricot and plum × apricot hybrids. Journal of the Sciences of Food and Agriculture 74: 541-546
  • Gokbulut I & Karabulut I (2012). SPME-GC-MS detection of volatile compounds in apricot varieties. Food Chemistry 132: 1098-1102
  • Frusciante L, Carli P, Ercolano M R, Pernice R, Matteo A, Fogliano V & Pellegrini N (2007). Antioxidant nutritional quality of tomato. Molecular Nutrition and Food Research 51: 609-617
  • Fanasca S, Colla G, Maiani G, Venneria E, Rouphael Y, Azzini E & Saccardo F (2006). Changes in antioxidant content of tomato fruits in response to cultivar and nutrient solution composition. Journal of Agricultural and Food Chemistry 54: 4319-4325
  • Erba D, Casiraghi M C, Ribas-Agusti A, Cáceres R, Marfà O & Castellari M (2013). Nutritional value of tomatoes (Solanum lycopersicum L) grown in greenhouse by different agronomic techniques. Journal of Food Composition and Analysis 31: 245- 251
  • De Souza V R, Pereira P A P, Queiroz F, Borges S V & De Deus Souza Carneiro J (2012). Determination of bioactive compounds, antioxidant activity and chemical composition of cerrado brazilian fruits. Food Chemistry 134: 381-386
  • Demir N, Yildiz O, Alpaslan M & Hayaloglu A A (2014). Evaluation of volatiles, phenolic compounds and antioxidant activities of rose hip (Rosa L.) fruits in Turkey. LWT-Food Science and Technology 27: 126-133
  • Cakmakci S & Hayaloglu A A (2011). Evaluation of the chemical, microbiological and volatile aroma characteristics of Ispir kaymak, a traditional Turkish dairy product. International Journal of Dairy Technology 64: 444-450
  • Carbonell-Barrachina A A, Agusti A & Ruiz J J (2006). Analysis of flavor volatile compounds by dynamic headspace in traditional and hybrid cultivars of Spanish tomatoes. European Food Research and Technology 222: 536-542
  • Buttery R G (1993). Quantitative and sensory aspects of flavor of tomato and other vegetables and fruits. In: Acree TE, Teranishi R (Eds), Flavor Science Sensible Principles and Techniques, Washington DC, pp. 259- 286
  • Barros L, Dueñas M, Pinela J & Carvalho A M (2012). Characterization and quantification of phenolic compounds in four tomato (Lycopersicon esculentum L.) farmers’ varieties in northeastern Portugal homegardens. Plant Food for Human Nutrition 67: 229-234