Arazi örtüsünün Landsat TM uydu görüntüleriyardımıyla belirlenmesi

Bu çalışmada, Bozcaada ilçesi arazi örtüsü haritaları, 2006, 2007 ve 2008 yıllarına ait Landsat uydu görüntülerikullanılarak elde edilmiştir. Çalışmada orijinal görüntülerin (6 band Landsat TM) yanında, görüntü işleme tekniklerikullanılarak oluşturulan yeni görüntüler de kullanılmıştır. Ana bileşenler analizi (AB), normalize edilmiş vejetasyonfarklılık indeksi (NDVI) ve Tasseled Cap (TC) dönüşüm yöntemi ile birlikte toplam on görüntü, kontrollü sınıflamayardımıyla sayısal harita haline getirilmiştir. Arazi örtüsü haritaları için arazi çıkışlarında toplanan verilerden vemevcut yüksek çözünürlüklü Formasat (2 m yersel çözünürlüklü) uydu görüntüsünden yararlanılarak doğrulukanalizi yapılmıştır. En yüksek ortalama sınıflama doğruluğu 3 band AB analizinden elde edilen görüntü içinbulunurken, en düşük ortalama sınıflama doğruluğu her üç yılın NDVI görüntüsünden elde edilen birleştirilmişgörüntüden hesaplanmıştır. Üç yılın orijinal görüntüleri birleştirilerek oluşturulan 18 band Landsat görüntüsü ve yineüç yıl için ayrı ayrı hesaplanan TC görüntüsünün ilk üç bandından oluşturulan 9 band TC görüntülerinin yüksekoranda ortalama sınıflama doğruluğuna sahip olduğu belirlenmiştir. Bozcaada benzeri bitki örtüsüne sahip alanlardaarazi örtüsü belirleme çalışmalarında, çok yıllık NDVI görüntüleri yerine AB analizi ve TC analizi kullanarakoluşturulacak sayısal haritaların daha yüksek doğruluğa sahip olacağı hesaplanmıştır..

Determination of land cover using Landsat TM imagery

In this study, land cover maps of Bozcaada district were developed using Landsat satellite images obtained in 2006,2007 and 2008. In addition to original images (6 band Landsat TM), the new images constituted with imageprocessing techniques were also used. A total of ten images were formed by supervised classification method usingprincipal component analysis (PCA), normalized difference vegetation index (NDVI), and tasseled cap (TC)transformation methods. Accuracy analysis were conducted for land cover maps using the data obtained in land andhigh resolution Formasat (2 m spatial resolution) satellite images. While the highest average classification accuracywas for 3 band image obtained by PCA, the lowest average classification accuracy was for the image obtained bycombining the NDVI images of three years. It was found that the highest average classification accuracies werecalculated for the image that was formed by the combination of 18 band Landsat images acquired in three years, and 9band images formed by the first three bands of TC images. It was calculated that, the digital maps formed by usingPCA and TC analysis have higher accuracies than that of multi-year NDVI images in the determination of land coverfor Bozcaada and similar locations.

___

  • Anderson J R, Hardy E H., Roach J T & Whitmer R E (1976). A Land Use and land cover classification system for use with remote sensing data. US Government Printing Office, Washington D.C
  • Beland M, Goıta K, Bonn F & Pham T T H (2006). Assessment of land-cover changes related to shrimp aquaculture using remote sensing data: a case study in the Giao Thuy District, Vietnam. International Journal of Remote Sensing 27(8): 1491–1510
  • Boer M & Puigdefábregas J (2005). Effects of spatially structured vegetation patterns on hillslope erosion in a semiarid Mediterranean environment: A simulation study. Earth Surface Processes and Landforms 30: 149-167
  • Bozcaada Kaymakamlığı (2008). Kaymakamlık web sitesi. http://www.bozcaada.gov.tr
  • Cardille J A & Foley J A (2003). Agricultural land-use change in Brazilian Amazonia between 1980 and 1995: Evidence from integrated satellite and census data. Remote Sensing of Environment 87(4):551-562
  • Chen S & Rao P (2008). Land degradation monitoring using multi-temporal Landsat TM/ETM data in a transition zone between grassland and cropland of Northeast China. International Journal of Remote Sensing 29(7): 2055–2073
  • Cohen W B, Fiorella M, Gray J, Helmer E & Anderson K (1998). An efficient and accurate method for mapping forest clearcuts in the Pacific Northwest using Landsat imagery. Photogrammetric Engineering and Remote Sensing 64: 293–300
  • Cohen W B & Goward S N (2004). Landsat's role in ecological applications of remote sensing. Bioscience 54: 535-545
  • Congalton R G & Green K (1999). Assessing the Accuracy of Remotely Sensed Data.CRC Press, Boca Raton, FL. pp 137
  • Coppin, P, Jonckheere I, Nackaerts K, Muys B & Lambin E (2004). Digital change detection methods in ecosystem monitoring: A review. International Journal of Remote Sensing 25(9): 1565–1596
  • Crist E P & Cicone R C (1984). Application of the Tasseled Cap concept to simulated Thematic Mapper data. Photogrammetric Engineering Remote Sensing 50(3): 343-352
  • Crist E P & Kauth R J (1986). The Tasseled Cap demystified, Photogrammetric Eng Remote Sens 52(1): 81-86
  • Deng X Z, Liu J Y, Zhan J Y, Zhao T (2004). Dynamic simulation on the spatio-temporal patterns of land use change in Taibus County. Geographical Research, 23(2):147–156
  • Dimyati M, Mizuno K, Kobayashi S & Kitamura T (1996). An analysis of land use/cover change using the combination of MSS Landsat and land use map -a case study in Yogyakarta, Indonesia. International Journal of Remote Sensing 17: 931–944
  • ERDAS 1999. Erdas Field Guide Worldwide Headquarters 2801 Buford Highway, NE Atlanta, Georgia 30329-2137 USA
  • Gao J & Yansui L (2008). Mapping of land degradation from space: A comparative study of Landsat ETM+ and ASTER data international. Journal of Remote Sensing 29: 4029–4043
  • Genç L (2003). Assessment of the Use of Remote Sensing Techniques for Locating and Mapping Ordinary High Water Lines for Lake Hatchineha in Florida. Graduate and Professional student forum 2003. University of Florida April 1th. 2003
  • Genc L & Smith S (2005) Principal components analysis for moderate and high resolution remote sensing data. Trakya Journal of Science 6(2): 29-48.
  • Genç L, Kavdır Đ, Turhan H, Genç H & Kavdır Y (2005). Bitkisel Üretim ve Uzaktan Algılama. Harran Üniversitesi Ziraat Fakültesi Dergisi 9(4): 1-9
  • Gibson P J (2000). Introductory Remote Sensing. London and New York: Routeledge
  • Jensen J R (1996). Introductory Digital Image Processing: A Remote Sensing Perspective. 2nd edition, Prentice Hall, Upper Saddle River, New Jersey, USA
  • Jensen J R (2000). Remote Sensing of The Environment: An Earth Resource Perspective. Prentice–Hall, Upper Saddle River, NJ
  • Kauth R J & Thomas G S (1976). The Tasseled Cap a graphic description of the spectral-temporal development of agricultural crops as seen in Landdat. In Proceedings on the Symposium on Machine Processing of Remotely Sensed Data. West Lafayette, Indiana, 41-51
  • Koutsias N, Giorgos M & Karteris M (2009). A forward/backward principal component analysis of Landsat-7 ETM+ data to enhance the spectral signal of burnt surfaces. Journal of Photogrammetry and Remote Sensing 64(1): 37-46
  • Lillesand T M & Kiefer R W (2000). Remote Sensing and Image Interpretation. The 4 th Edition. New York: John Willey and Sons. 724 pp
  • Lobo A, Legenre P, Rebollar J, Carreras J & Ninot J (2004). Land cover classification at a regional scale in Iberia: separability in a multi-temporal and multi- spectral data set of satellite images. International Journal of Remote Sensing 25: 205–213
  • Mather, P.M., (1999). Computer Processing of Remotely Sensed Images. Prentice Hall, USA
  • Musaoglu N, Tanik A & Kocabas V (2005). Identification of land-cover changes through image. Processing and associated impacts on water reservoir conditions. Environmental Management 35(2): 220– 230.
  • Muttitanon W & Tripathi N K (2005). Land use/land cover changes in the coastal zone of Ban Don Bay, Thailand using Landsat 5 TM data. International Journal of Remote Sensing 26(11): 2311–2323
  • Oindo B O & Skidmore A K (2003). Mapping habitat and biological diversity in the Maasai Mara ecosystem. International Journal of Remote Sensing 24:1053-1069
  • Pax-Lenney M, Woodcock C E, Collins J B & Hamdi H (1996) The status of agricultural lands in Egypt: the use of multitemporal NDVI features derived from Landsat TM. Remote Sensing of Environment 56: 8- 20
  • Raina P, Joshi D C & Kolarkar A S (1993). Mapping of soil degradation by using remote sensing on alluvial plain, Rajasthan, India. Arid Soil Research and Rehabilitation 7: 145–161
  • Richards J A & Jia X (1999). Remote Sensing Digital Image Analysis: An Introduction, 3rd edn (Sydney: Springer Verlag)
  • Richards J A & Jia X (2006). Interpretation of hyperspectral image data. In: Remote Sensing Digital Image Analysis, Springer, New York, USA. pp. 359- 387
  • Rouse J W, Haas R H, Schell J A & Deering D W (1973). Monitoring Vegetation Systems In The Great Plains With ERTS, Third ERTS Symposium, NASA, SP-351, 1: 309-317
  • Sader S A, Bertrand M & Wilson E H (2003). Satellite change detection of forest harvest patterns on an industrial forest landscape. Forest Science 49(3): 341–353
  • Symeonakis E & Drake N (2004). Monitoring desertification and land degradation over sub-Saharan Africa. International Journal of Remote Sensing 25:573–592
  • Story M & Congalton R G (1986). Accuracy assessment: A user’s perspective. Photogrammetric Engineering and Remote Sensing 52: 397-399
  • TUİK (2008). Đstatistikler. http://www.tuik.gov.tr/
  • Wood T F & Foody G M (1989). Analysis and representation of vegetation continua from Landsat thematic mapper data for lowland heaths. International Journal of Remote Sensing 10: 181-191
  • Yuan F, Sawaya K E, Loeffelholz B C & Bauer M E (2005). Land cover classification and change analysis of the Twin Cities (Minnesota) Metroplitan Area by multitemporal Landsat remote sensing. Remote Sensing of Environment 98:317–328
Tarım Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Halit APAYDIN