Effects of various strip widths and tractor forward speeds in strip tillage on soil physical properties and yield of silage corn

Bu çalısmada, farklı serit genisliklerinin silajlık mısırda tarla filizi çıkısı, bitki gelisimi ve silaj verimine olan etkilerinin belirlenmesi amacıyla tarla kosullarında 2 yıllık bir deneme yürütülmüstür. Seritsel toprak isleme için, bu amaca uygun hale getirilen C tipi bıçaklara sahip bir frezeli ara çapa makinasından yararlanılmıstır. Frezeli ara çapa makinası bıçaklarının flans bağlantı konumları değistirilerek elde edilen 22.5, 30 ve 37.5 cm genisliklerindeki seritlerle tarla yüzeyinin sırasıyla % 30, 40 ve 50’si islenmistir. Farklı toprak parçalama değerleri elde etmek için 370 $min^{ -1}$ sabit r otor dönme hızı ve 10 cm is derinliğinde kullanılan frezeli ara çapa makinası ile 1.8, 3.6 ve 5.4 km $h^{ -1}$’ten olusan 3 farklı traktör ilerleme hızında çalısılmıstır. Ekim, hassas ekim makinası kullanılarak 70 cm sıra aralığında yapılmıstır. Elde edilen sonuçlara göre, serit genisliğinin artısı toprak sıcaklığını arttırırken, buharlasmayı hızlandırdığından dolayı, toprak nem içeriğinin azalmasına neden olmustur. Tarla filizi çıkısı, bitki boyu ve silaj verimi serit genisliğinin artmasıyla artarken, ortalama çıkıs süresi serit genisliği artısı ile azalmıstır. Traktör ilerleme hızı toprağın parçalanması üzerinde etkili olmustur. Đlerleme hızı arttıkça, küçük toprak parçacıklarının dağılımında azalma meydana gelmistir. Traktör ilerleme hızının diğer parametreler üzerinde istatistiksel olarak önemli bir etkiye sahip olmadığı ortaya çıkmıstır.

Seritsel toprak islemede farklı serit genisliklerinin ve Traktör ilerleme hızlarının toprak fiziksel özellikleri ve silajlık mısır verimine etkileri

In this study, a 2 year experiment was conducted in field conditions in order to determine the effects of various strip widths on seedling emergence, plant growth and yield of silage corn. A row crop rotary hoe with C type blades, which was equipped for this purpose, was used for strip tillage. In the experiment, 30%, 40% and 50% of the field area was tilled respectively with the strips in 22.5, 30 and 37.5 cm widths, which were obtained by changing the positions of flanges and blade connections of the rotary hoe. The rotary hoe, which was used with a constant rotor rotation speed of 370 $min^{ -1}$ and a tillage depth of 10 cm, was operated at 3 different tractor forward speeds such as 1.8, 3.6 and 5.4 km $h^{ -1}$ in order to get various soil fragmentation values. The seeds were sown by using precision seed planter at 70 cm row intervals. According to the results obtained from the study, since increasing the strip width also increased the soil temperature and accelerated the evaporation, it resulted in a reduction of the soil moisture content. While seedling emergence, plant height and the silage yield increased with the increase of the strip width, the average emergence time decreased. Tractor forward speed had an effect on soil fragmentation. When the tractor forward speed increased, there seemed to be a reduction in the breaking of soil particles. It was found that the tractor forward speed did not have a statistically significant effect on other parameters.

___

  • Al-Kaisi M M & Yin X (2005). Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn–soybean rotations. Journal of Environmental Quality 34(2): 437-445
  • Bilbro J D & Wanjura D F (1982). Soil crusts and cotton emergence relationships. Transactions of the ASAE 25(4): 1484-1487
  • Blake G R & Hartge K H (1986). Bulk density. Methods of Soil Analysis, Part I. In: ASA SSSA, Wisconsin, A.B.D., pp. 363-376
  • Bolton F E & Booster DE (1981). Strip-till planting in dry land cereal production. Transaction of the ASAE 24(1): 59-62
  • Bosch D D, Potter TL, Truman C C, Bednarz C W & Strickland T C (2005). Surface runoff and lateral subsurface flow as a response to conservation tillage and soil-water conditions. Transactions of the ASAE 48(6): 2137−2144
  • Cavalaris C K, Gemtos T A & Alexandrou A (2003). The influence of various cultivation techniques on soil seedbed temperature. ASAE Paper No: 031019. St. Joseph, MI 49085-9659
  • Celik A (1998). Toprak frezesinde değisik tip bıçakların toprağa olan etkilerinin ve güç tüketimlerinin belirlenmesi üzerine bir arastırma. Doktora Tezi. Atatürk Üniversitesi Fen Bilimleri Enstitüsü (Basılmamıs), Erzurum
  • Cruse R M (2002). Strip tillage effects on crop production, crop year 2001. Department of Agronomy, Iowa State Univ., 212 Agr. Hall, Ames, IA 50011
  • Demiralay Đ (1993). Toprak Fiziksel Analizleri. Atatürk Üniversitesi Ziraat Fakültesi Yayınları: 143, Ders Kitabı: 132, Erzurum
  • DMI (2007). T.C. Basbakanlık Devlet Meteoroloji Đsleri Genel Müdürlüğü, Erzurum Bölge Müdürlüğü Raporları
  • Lamm F & Aiken R (2006). Effect of tillage and irrigation capacity on corn production. In: 18th Annual Central Plains Irrigation Conference, 21-22 February, Colby, Kansas
  • Lee K S, Park S H, Park W Y & Lee C S (2003). Strip tillage characteristics of rotary tiller blades for use in a dry land direct rice seeder. Soil and Tillage Research 71: 25-32
  • Licht M A & Al-Kaisi M (2005). Strip-tillage effect on seedbed soil temperature and other soil physical properties. Soil and Tillage Research 80: 233-249
  • Lowther W L, Horrell R F, Fraser W J, Trainor K D & Johnstone P D (1996). Effectiveness of a strip seeder direct drill for pasture establishment. Soil and Tillage Research 38: 161-174
  • Lyles L & Woodruff N P (1962). How moisture and tillage affect soil cloudiness for wind erosion control. Agricultural Engineering 43(3): 150-153
  • Mc Carthy J R, Donald L P & Currence H D (1993). Conservation tillage and residue management to reduce soil erosion. Agricultural Publication: G1650, Department of Agricultural Engineering, University of Missouri, Columbia
  • Morrison J E (2002a). Strip tillage for “No Till” row crop production. Applied Engineering in Agriculture 18(3): 277-284
  • Morrison J E (2002b). Compatibility among three tillage systems and types of planter press wheels and furrow openers for vertisol clay soils. Applied Engineering in Agriculture 18(3): 293-295
  • Morrison J E & Sanabria J (2002). One-pass and twopass strip tillage for conservation row-cropping in adhesive clay soils. Transaction of the ASAE 45(3): 1263-1270
  • Mullins G L, Alley S E & Reeves D W (1998). Tropical maize response to nitrogen and starter fertilizer under strip and conventional systems in southern Alabama. Soil and Tillage Research 45(1): 1-15
  • Opoku G, Vyn T J & Swanton C J (1997). Modified notill systems for corn following wheat on clay soils. Agronomy Journal 89: 549–556
  • Reeder R C (2002). Maximizing performance in conservation tillage systems. ASAE Paper No: 021134, St. Joseph, MI-49085
  • Reicosky D C (1998). Strip tillage methods: Impact on soil and air quality. In: ASSSI National Soils Conference, 56-60, Brisbane- Australia
  • Roth G W (2001). Corn silage production and management. College of Agricultural Sciences. Agricultural Research and Coop. Extensions, Agronomy Facts 18
  • Wysocki D (1986). A strip-till planting system for no-till fallow. PNW Conservation Tillage Handbook Series. Chapter 2. System and Equipment No: 3
Tarım Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Halit APAYDIN