Şebeke Bağlantılı Bir Fotovoltaik Tesisin Uzun Erimli Teknik ve Ekonomik Analizi

Dördüncü Sanayi Devrimi, dijital devrime dayanmanın yanında birçok farklı teknolojiyi bir araya getirmekte ve ekonomi, iş, toplum ve bireyler için benzeri görülmemiş paradigma kaymalarına yol açmaktadır. Yenilenebilir teknolojilere dayalı fotovoltaik santraller geleceğin şekillenmesi ve enerji teknolojilerinde dijital dönüşümün gerçekleşmesinde önemli oynayacaktır. Fotovoltaik enerjiye dayalı yatırımların devamlılığı için tüm aktörlerin bir fotovoltaik güç üretim tesisi yaşam döngüsüne yönelik bilgilerinin olması ve indirgenmiş elektrik maliyeti değerlerine ulaşabilmeleri gerekmektedir. Bu çalışmada Türkiye’de altı bölge için System Advisor Model (SAM) yazılımı kullanılarak kurgulanan santrallerin teknik ve ekonomik analizi yapılarak birbirleri ile karşılaştırılmıştır.

Long Term Technical and Economic Analysis of A Grid Tied PV Plant With System Advisor Model Software

The Fourth Industrial Revolution builds on the digital revolution and combines multiple technologies that are leading to unprecedented paradigm shifts in the economy, business, society, and for individuals. Photovoltaic (PV) plants based on renewable technologies will play an important role in shaping the future and in the realization of digital transformation in energy. For the sustainable growth of PV power plant investments, the lack of information about the life cycle of PV power plants among stakeholders must be reduced in order to minimize Levelized Cost of Electricity (LCOE). This study focused on technical and economic analysis of PV power plants which is conducted with System Advisor Model software for six different locations in Turkey.

___

  • IPCC, 2014, “Climate Change 2014 Synthesis Report Summary for Policymakers”, https://www.ipcc.ch/pdf/assessment-report/ar5/syr/AR5_SYR_FINAL_SPM.pdf, Erişim Tarihi: 08.05.2019.
  • Worldometer, “World Population: Past, Present, and Future”, http://www.worldometers.info/world-population/, Erişim tarihi: 09.05.2019.
  • Blair, N., Dobos, A.P., Freeman, J., Neises, T. and Wagner, M., NREL, 2014, “System Advisor Model, SAM 2014.1.14: General Discription”, http://www.nrel.gov/docs/fy14osti/61019.pdf, Erişim tarihi: 08.05.2019.
  • SAM Roadmap, 2014, “SAM Five Year Solar Technologies Roadmap”, NREL, https://sam.nrel.gov/sites/default/files/sam-roadmap-v4_0.pdf, Erişim tarihi: 10.05.2019.
  • Güney, I. (2013). Elektrik Enerji Sistemlerinin Ekonomik İşletme Büyüklüklerine Göre Analizi, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 7. http://dergipark.org.tr/gazimmfd/issue/6697/88214
  • Altaş, A, Güngör, Z. (2013). Yatırım Projeleri Değerlendirmesinde Karar Destek Sisteminin Geliştirilmesi Ve Uygulanması. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 9: http://dergipark.org.tr/gazimmfd/issue/6643/89269
  • Diaf, S., Notton, G., Belhamel, M., Haddadi, M., Louche, A. (2008). Design and techno-economical optimization for hybrid PV/wind system under various meteorological conditions. Applied Energy, 85(10), 968-987.
  • Seng, L., Lalchand, G., Sow Lin, G. (2008). Economical, environmental and technical analysis of building integrated photovoltaic systems in Malaysia. Energy Policy, 36 (6), 2130-2142.
  • Camilo, F., Castro, R., Almeida, M., Pires, V. (2017). Economic assessment of residential PV systems with self-consumption and storage in Portugal. Solar Energy, 150, 353-362.
  • Chen, J., Hung, C., Gilmore, J., Roesch, J, Zhu, W. (2010). LCOE reduction for megawatts PV system using efficient 500 kW transformerless inverter. 2010 IEEE Energy Conversion Congress and Exposition, ECCE 2010 - Proceedings 392-397.
  • Song, J. and Choi, Y. (2016). Analysis of the Potential for Use of Floating Photovoltaic Systems on Mine Pit Lakes: Case Study at the Ssangyong Open-Pit Limestone Mine in Korea, Energies, 9(2):102.
  • Navabi, R., Abedi, S., Hosseinian, S.H. and Pal, R. (2015). On the fast convergence modeling and accurate calculation of PV output energy for operation and planning studies, Energy Conversion and Management, 89: 497–506.
  • NREL, “Research Cell Efficiency Records”, http://www.nrel.gov/ncpv/images/efficiency_chart.jpg, Erişim tarihi: 13.05.2019. Weather Data, “Where to find Solar Resource Data to Use with SAM”, NREL, https://sam.nrel.gov/weather, Erişim tarihi: 03.05.2019.
  • Meteonorm, http://www.meteonorm.com, Erişim tarihi: 02.05.2019.
  • IFC, 2015, “Utility Scale Solar Photovoltaic Power Plants: A Project Developer’s Guide”, http://www.ifc.org/wps/wcm/connect/b46619004b5e398cb8b5fd08bc54e20b/IFC+-+Solar+Developer%27s+Guide+-+Web.pdf?MOD=AJPERES, Erişim tarihi: 09.05.2019.
  • Abbasoglu, S., Nakipoglu, E. and Kelesoglu, B. (2011). Viability analysis of 10 MW PV plant in Turkey, Energy Education Science and Technology Part A: Energy Science and Research, 27(2): 435-446.
  • Caglayan, N., Ertekin, C. and Evrendilek, F. (2014). Spatial viability analysis of grid-connected photovoltaic power systems for Turkey, International Journal of Electrical Power & Energy Systems, 56: 270-278.
  • Dağtekin, M., Kaya, D., Öztürk, H.H. and Kiliç, F.Ç. (2014). A study of techno-economic feasibility analysis of solar photovoltaic (PV) power generation in the province of Adana in Turkey, Energy Exploration & Exploitation, 32(4): 719-736.
  • REN21, 2016, “Renewables 2016 Global Status Report”, http://www.ren21.net/wp-content/uploads/2016/06/GSR_2016_Full_Report_REN21.pdf, Erişim tarihi: 13.05.2019.
  • IEA, 2014, “Technology Roadmap Solar Photovoltaic Energy”, https://www.iea.org/media/freepublications/technologyroadmaps/solar/TechnologyRoadmapSolarPhotovoltaicEnergy_2014edition.pdf, Erişim tarihi: 08.05.2019.