ENDÜSTRİYEL ATIK TARAFINDAN ASFALT BETON PERFORMANSIYLA DEĞİŞTİRİLEN BİTÜMEN ETKİLERİNİN İNCELENMESİ

Sıcaklık ve yükleme yapısındaki mevsimsel değişimin, viskoelastik yapısından dolayı asfalt davranışı üzerinde önemli bir etkisi vardır. Asfalt binderinin bu davranışından dolayı, aralarında delme ve yorulma çatlaklarının çok yaygın olduğu çeşitli esnek döşeme başarısızlıkları / sıkıntıları ortaya çıkar. Bu çalışmada, baz bitümün (PG 64-10) eklenmesi için Düşük Yoğunluklu ve Yüksek Yoğunluklu Polietilen ve Kırıntı kauçuğu kullanılmıştır.Dinamik Kesme Reometresinden (DSR) elde edilen kompleks modül (G *) ve faz açısı (δ), bağlayıcının yırtılma ve yorulma çatlağına ilişkin davranışını değerlendirmek için kullanılan temel perimetrelerdir. Düşük Yoğunluklu Polietilen (LDPE), Yüksek Yoğunluklu Polietilen (HDPE) ve Crumb Kauçuk (CR) modifiye edilmiş bağlayıcı maddenin, bağlayıcı maddenin reolojik özelliklerinde önemli gelişme gösterdiği sonucuna varılmıştır. Ayrıca, bu belediye atıklarının geri dönüşümü, bu atıkların çöplüklere atılmasından kaynaklanan Orta Doğu ülkelerinde çevresel sorunların çözümüne katkıda bulunacaktır. Çevre kirliliği, Mısır gibi gelişmekte olan ülkelerde büyük bir sorundur. Atık polimerlerin tekrar kullanılması, çevresel beyaz kirliliği ve yol kaplama ve bakım maliyetlerinin azaltılması için çekici bir çözüm olarak kabul edilmektedir. Bu araştırma, bazı endüstriyel atıkları polipropilen ve polyester elyaf olarak kullanarak asfaltlamak için çevre dostu sıcak karışım asfaltını (HMA) hazırlamayı amaçlamaktadır. Karışımdaki katı malzemeler normal ve yüksek gözenekli agregaları içerir. Özel bağlayıcıların hazırlanmasında, ağırlıkça% 5 ve% 10 atık polimerleri asfalt kullanılmıştır. Örnekler fiziksel özellikleri, kimyasal özellikleri, yaşlanma, taramalı elektron mikroskobu (SEM) ve termo-gravimetrik analizleri (TGA) için test edildi. Sonuçlar, atık polimerin% 5'ini kullanarak hazırlanan HMA'nın, normal olana kıyasla daha yüksek performansa sahip olduğunu ve atık polimerin yol yapımında kullanılabileceğini ortaya koydu.

INVESTIGATION OF THE EFFECTS OF MODİFİED BITUMEN ON ASPHALT CONCRETE PERFORMANCE BY INDUSTRIAL WASTE

The seasonal change in temperature and loading nature has a significant effect on asphalt behavior because of its viscoelastic nature.  Several types of flexible pavement failure/distress occur due to this behavior of asphalt binder, among which rutting and fatigue cracks are very common. In this study, Low Density and High Density Polyethylene and Crumb rubber were used as additions to base bitumen (PG 64-10). Complex modulus (G*) and phase angle (δ) obtained from Dynamic Shear Rheometer (DSR) are the basic perimeters used to evaluate the behavior of the binder in respect to rutting and fatigue cracking. It was concluded that Low Density Polyethylene (LDPE), High Density Polyethylene (HDPE), and Crumb Rubber (CR) modified binder showed significant improvement in rheological properties of the binder. Furthermore, recycling these municipal wastes will contribute to solving environmental problems in the of Middle East countries caused by the piling up of these wastes in dumpsites.  Environmental pollution is a major problem in developing countries like Egypt. Reuse of waste polymers is considered an attractive solution for environmental white pollution and reducing of the costs of road pavement and maintenance. This research aims to prepare environmentally friendly hot mix asphalt (HMA) for paving using some industrial wastes as polypropylene and polyester fibers. The solid materials in the mix include normal and highly porous aggregates. 5% and 10% of waste polymers by weight of the asphalt were used to prepare special binders. The samples were tested for their physical properties, chemical properties, aging, scanning electron microscopy (SEM) and thermo-gravimetric analysis (TGA). The results revealed that the prepared HMA using 5% of waste polymer had high performance as compared to the ordinary one and the waste polymer could be used in road construction. 

___

  • [R. Traxler, Asphalt: Its Composition, Properties and Uses, Reinhold Publishing Corporation, New York, 1961.
  • P. Partal, F. Martı´nez-Boza, B. Conde, C. Gallegos, Fuel 78 (1999) 1–10.
  • L. Palade, P. Attane´ , S. Camaro, Rheol. Acta 39 (2000) 180–190.
  • D. Lesueur, J. Gerard, P. Claudy, J. Le´ toffe´ , J. Planche,D. Martin, J. Rheol. 40 (1996) 813–836.
  • W. Shaopeng, Y. Qunshan, L. Ning, Constr. Build. Mater. 22 (10) (2008) 2111–2115.
  • S. Abtahi, M. Sheikhzadeh, S. Hejazi, Constr. Build. Mater. 24 (6) (2010) 871–877.
  • Ministry of Transport (MOT-2006), http://www.mot.gov.sa/
  • Ghaly, N. (2008). “Effect of Sulfur on the Storage Stability of Tire Rubber Modified Asphalt”, World Journal of Chemistry , 3(2), 42-50.
  • Gawel, I. (2000). “Sulphur-modified asphalts”, Journal of asphaltenes and asphalts, Elsevier Science Ltd, 2, 515-535.
  • Bernier A, Adam Z and Iliya Yut "Laboratory evaluation of rutting susceptibility of polymer-modified asphalt mixtures containing recycled pavements" Construction and Building Materials 31 (2012) 58–66. [14] Moghaddam T.B, Soltani M, Karim M. R "Evaluation of permanent deformation characteristics of unmodified and Polyethylene Terephthalate modified asphalt mixtures using dynamic creep test" Journal of Materials and Design, 53(2014) 317–324.
  • Amir Modarres and Hamedi H "Effect of waste plastic bottles on the stiffness and fatigue properties of modified asphalt mixes" Journal of Materials and Design 61(2014) 8–15.
  • Emhaidy S. Gharaibeh, No'man M. Haimour, and Bilal A. Akash “Evaluation of Current Municipal Solid Waste Practice and Management for Al-Ahsa, Saudi Arabia” Int. J. of Sustainable Water and Environmental System Volume 2, No. 2 (2011) 103-110.
  • http://en.wikipedia.org .
  • González U. O. 2008. Rheological property of bitumen modified with polyethylene and polyethylene based blends.
  • Garcia-Morales M., Partal P., Navarro F.J., Martinez- Boza F., Gallegos C., González N., González O. and Muñoz M. E. 2004. Viscous properties and microstructure of recycled over modified bitumen. Fuel. 83(1): 31-38.
  • Polacco G., Stastna J., Biondi D. and Zanzotto L. 2006. Relation between polymer architecture and nonlinear visco elastic behavior of modified asphalts. Current Opinion in Colloid and Interface Science. [21] Yuonne B. and Yajaira R. 2001. Polymer Modified Asphalt. Vision technologica. 9(1): 39-48.
  • Garcia-Morales M., Partal P., Navarro F.J. and Gallegos C. 2005. Effect of waste polymer addition on the rheology of modified bitumen. Fuel. 85(11): 936- 943.
  • Abtahi S.M., Sheikhzadeh M. and Hejazi S.M. 2010. Fiberreinforced asphalt-concrete - A review. Construction and Building Materials. 24(16): 871-877.
  • Gonzalez O., Munoz M. E. and Santamaria A. 2006. Bitumen/polyethylene blends: using m-LLDPE to improve stability and viscoelastic properties. Rheological Act Journal. 45(5): 603-610. [25] Pe´rez-Lepe A., Martý´nez-Boza F.J., Gallegos C., Gonza´lez O., Mun˜o M.E. and Santamarý A. 2003. Influence of the processing conditions on the rheological behavior of polymer-modified bitumen.
  • J.-Y. Yu, P.-L. Cong, and S.-P. Wu, “Laboratory Investigation on the Properties of Asphalt Modified with Epoxy Resin,” Journal of Applied Polymer Science, vol. 113, pp. 3557–3563, 2009.
  • M. Sienkiewicz, J. K. Lipka, H. Janik, and A. Balas, Waste Management, vol. 32, 2012.
  • S. Rokade, “Use of plastic and waste rubber tires in flexible highway pavements,” in Proc. International Conference on Future Environment and Energy, vol. 28, IACSIT Press, Singapoore, 2012.