Isı Yalıtım Teknolojilerinde Vermikülit Kullanılabilirliğinin Araştırılması

Bu makale duvarlardaki farklı yalıtım malzemelerinin karşılaştırmalı teorik ısı transferi çalışmasını sunmaktadır. Çalışma için seçilen malzemeler aerojel, taşyünü, cam yünü, koyun yünü, kenevir, keten, cüruf yünü, cam elyaf, fenolik köpük, vermikülit, PUF / PIR köpük, polistiren köpük, talaş, perlit, polyester, karton ve mantardır. Bu çalışmada, çimentolu sıva, kırmızı tuğla / uçucu tuğla, çimento sıva, kontrplak, yalıtım malzemesi tabakası ve alçıpan çok tabakalı, yani farklı yalıtım malzemeleri ile değişen beşinci tabakalar hariç tüm tabakaların aynı olduğu altı tabaka kombinasyonu tanıtılmıştır. Çalışmadan, tuğla duvarın kırmızı tuğla duvardan daha düşük ısı transferine sahip olmasına rağmen, yalıtım katmanı olmayan kırmızı tuğla duvar ve uçucu tuğla duvarın daha yüksek ısı transferine sahip olduğu sonucuna varılabilir. Kırmızı tuğla duvar söz konusu olduğunda, aerojelli duvar en düşük ısı transferine sahiptir ve 100C’de 2.53 W ve 300C’de 7.60 W ve vermikülitli duvar 100C’de 9.28 W ve 27.83at 300C’de en yüksek ısı transferine sahiptir. Uçucu tuğla durumunda, aerojelli duvarın en düşük ısı transferi 100C’de 2.43 W ve 300C’de 7.28 W’dir ve vermikülitli duvar 100C’de 7.97 W ve 300C’de 23.91 W olan en yüksek ısı transferine sahiptir.

Investigation Of The Availability Of Vermiculite In Thermal Insulation Technologies

Buildings are aimed to provide shelter against the weather and climatic vagaries but at the same time a good building construction should provide thermal comfort in an energy efficient way. One of the major components of building envelope is walls which plays an important part in heat transfer. If thermal resistance of walls is high the indoor environment can be maintained at desired levels of temperature with minimum energy requirements. In order to improve the building thermal efficiency it is important to improve the thermal resistance of the walls through use of suitable insulating materials. This paper presents a comparative theoretical heat transfer study of different insulating materials in walls. The materials chosen for study are aerogel, rockwool, glass wool, sheep wool, hemp, flax, slag wool, fiber glass, phenolic foam, vermiculite, PUF/PIR foam, polystyrene foam, sawdust, perlite, polyester, cardboard and cork. Present study introduced multilayer of cement plaster, red brick/flyash brick, cement plaster, plywood, insulating material layer and gypsum board i.e. six layers combination have been introduced in which all layers are same except fifth layers which is varied by different insulating materials. From the study, it can be concluded that red brick wall and flyash brick wall without insulating layer has higher heat transfer although flyash brick wall has lower heat transfer than red brick wall. In case of red brick wall, wall with aerogel has the lowest heat transfer and it is 2.53 W at 100C and 7.60 W at 300C and wall with vermiculite has highest heat transfer which is9.28 W at 100C and 27.83at 300C. In case of flyash brick, wall with aerogel has lowest heat transfer which is 2.43 W at 100C and 7.28 W at 300C and wall with vermiculite has highest heat transfer which is 7.97 W at 100C and 23.91 W at 300C. 

___

  • 1. Raman P, Mande S and Kishore V V N, Passive solar system for thermal comfort conditioning of building in composite climates, Solar energy volume 70 no.4 pp.319-329, 2001. 2. Wong I.L. et al, A review of transparent insulation systems and the evaluation of payback period for building applications, Solar energy 81,1058-1071, 2007. 3. Li D. H.W. & Wong S.L, Daylighting and energy implications due to shading effects from nearby building, Applied energy 84, 1199-1209, 2007. 4. Chungloo S. and Limmeechokchai B., Utilization of cool ceiling with roof solar chimney in Thailand: The experiment and numerical analysis, Renewable energy 34, 623-633, 2009. 5. Ralegaonkar R.V. & Gupta R., Review of intelligent building construction: a passive solar architecture approach, 14, 2238-2242, 2010. 6. Kamal M. A., An overview of passive cooling techniques in buildings: Design concept and architectural interventions, Acta technical napocensis: civil engineering and architecture vol. 55, no.1 2012. 7. Geetha N.B. and Velraj R., passive cooling methods for energy efficient buildings with and without thermal energy storage: A review, energy education science and technology part a: energy science and research , volume (issues ) 29(2): 913-946, 2012. 8. Li X. et al.,Comparison and analysis of lightweight steel structure residential housing, International Conference on Mechatronics, Control and Electronic Engineering (MCE 2014). 9. Bax L. et al., advance material for energy efficient building, innovative chemistry for energy efficiency of buildings in smart cities, European Commission. 10. C. Bowen, R. Yuanlin and K. Weimin, J. Text. Res., 2007, 28, 19. 11. H. T. Deo, N. K. Patel and B. K. Patel, J. Fibers Fabr., 2008, 3, 23–38. 12. AL-HARAHSHEH, M., KINGMAN, S. & BRADSHAW, S. 2006a. Scale up possibilities for microwave leaching of chalcopyrite in ferric sulphate. International Journal of Mineral Processing, 80, 198-204. 13. AL-HARAHSHEH, M. & KINGMAN, S. W. 2004. Microwave assisted leaching – a review. Hydrometallurgy, 73, 189-203. 14. AMANKWAH, R. K. & OFORI-SARPONG, G. 2011. Microwave heating of gold ores for enhanced grindability and cyanide amenability. Minerals Engineering, 24, 541-544. 15. AMANKWAH, R. K., PICKLES, C. A. & YEN, W. T. 2005. Gold recovery by microwave augmented ashing of waste activated carbon. Minerals Engineering, 18, 517-526. 16. ANDRES, U. 1996. Dielectric separation of minerals. Journal of Electrostatics, 37, 227-248.17. ANDRONOVA, V. I. 2007. A Study of the Crystalline Structure of Vermiculite from the Tebinbulak Deposit. Refractories and Industrial Ceramics, 48, 91-95. 18. ANJOS, D. I. F., FONTGALLAND, G. & R.S.C. FREIRE 2011. Vermiculite dielectric constant measurement using a volumetric water content probe. IEEE, 1-5. 19. ASAMI, K. 2002. Characterisation of heterogeneous systems by dielectric spectroscopy. Progress in Polymer Science, 27, 1617-1659. 20. ATOMIC ENERGY OF CANADA LIMITED 1990. Microwave and minerals: Industrial mineral background paper. Ontario: Energy, mines and resource, Canada. 21. AYRES, R. U., AYRES, L. W. & RÅDE, I. 2002. The Life Cycle of Copper, its Co- Products and By-Products. France: Centre for the Management of Environmental Resources INSEAD. 22. BAKER-JARVIS, J., JANEZIC, M. D., JOHN H. GROSVENOR, J. & GEYER, R. G. 1993. Transmission/Reflection and short-circuit line methods for measuring permittivity and permeability. In: NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY (ed.). Colorado: U.S. Government printing office. 23. A.C METAXAS AND R.J. MEREDITH 1983. Industrial Microwave Heating, London, The Institution of Engineering and Technology.