Lens Proteinleri ve Fizyolojisi

Vücudumuzda bulunan bazı doku ve organlar dışında genel itibari ile beslenmedamar yolu ile olur. Fenestralı kılcal damarlar doku içerisine yayılarakdokunun ihtiyaç duyduğu oksijeni eritrositler, besin maddelerini de kanın serumkısmı ile taşır. Doku ihtiyacı olan metabolitleri aldıktan sonra artıklarınıda yine fenestralı kılcal damarlar ve lenf damaları sayesinde geri verir. Lensvücutta kan dolaşımının aktif olarak bulunmadığı ve canlılığını koruyan nadiryapılardan bir tanesidir. Beslenmesini ve artık boşaltımını aköz hümörebağımlı olarak gerçekleştirir. Lensin metabolizması bu yüzden özelleşmiş birdöngüye sahiptir. Vücuttaki tüm organ ve dokuların temel yapı taşı proteindir.Lens vücutta hacim başına en fazla protein olan dokulardan biridir. İçeriğindekiyüksek protein miktarı lensin ihtiyaç duyduğu yüksek kırıcılık indeksineve refraktif indeksin oluşmasını sağlar. Aynı zamanda lensin saydamlığınınkorunmasında da lens proteinleri önemli görevler üstlenir. Bununla birliktelens hücrelerinin birbiri ile madde alışverişi sağlayabilmesi için de fonksiyonlargörür. Lens hücreleri içerisindeki proteinler ise hücre şeklinin korunmasındagörev yaparlar.

Lens Proteins and Physiology

Except for some of the tissues and organs found in our body, nutrition generally takes place via the vein. Fenestral capillary vessels spread through the tissue to touch the needy oxygen erythrocytes, and the nutrients are carried by the blood serum part. Once the tissue has taken up the metabolites it needs, it also restores its debris through its fenestral capillaries and lymph vessels. The lens is a rare tissue of the body that does not have an active blood circulation and protects its vitality. It performs feeding and residual discharge dependent on aqueous humor. The metabolism of the lens thus has a specialized loop. The basic building block of all the organs and tissues in the body is protein. The lens is one of the tissues with the highest protein per volume in the body. The high amount of protein in it provides the refractive index and refractive index required by the lens. At the same time, lens proteins play an important role in preserving the transparency of the lens. However, it also functions to allow the lens cells to exchange materials with each other. The proteins in the lens cells function in protecting the cell shape.

___

  • Vaghefi E, Malcolm DTK, Jacobs MD, Donaldson PJ. Development of a 3D finite element model of lens microcirculation. Biomedical engineering online. 2
  • Kador PF, Kinoshita JH. Diabetic and galactosaemic cataracts. Ciba Foundation symposium. 1984;106:110-31.
  • Burg MB, Kador PF. Sorbitol, osmoregulation, and the complications of diabetes. The Journal of Clinical Investigation.81(3):635-40.
  • Seland JH, Chylack Jr LT. Acute glucose- derived osmotic stress in rabbit lenses. Acta ophthalmologica. 1986;64(5):533-9.
  • Yabe-Nishimura C. Aldose Reductase in Glucose Toxicity: A Potential Target for the Prevention of Diabetic Complications. Pharmacological Reviews. 1998;50(1):21-34.
  • Grant CM. Metabolic reconfiguration is a regulated response to oxidative stress. Journal of Biology. 2008;7(1):1.
  • Hockwin O, Blum G, Korte I, Murata T, Radetzki W, Rast F. Studies on the Citric Acid Cycle and its Portion of Glucose Breakdown by Calf and Bovine Lenses . Ophthalmic Research. 1971;2(3- 4):143-8.
  • Goulielmos G, Remington S, Schwesinger F, Georgatos SD, Gounari F. Contributions of the structural domains of filensin in polymer formation and filament distribution. Journal of Cell Science. 1996;109(2):447-56.
  • Goulielmos G, Gounari F, Remington S, Müller S, Häner M, Aebi U, et al. Filensin and phakinin form a novel type of beaded intermediate filaments and coassemble de novo in cultured cells. The Journal of Cell Biology. 1996;132(4):643-55.
  • Carter JM, Hutcheson AM, Quinlan RA. In vitro studies on the assembly properties of the lens proteins CP49, CP115: Coassembly with α- crystallin but not with vimentin. Experimental eye research. 1995;60(2):181-92.
  • Sandilands A, Prescott AR, Carter JM, Hutcheson AM, Quinlan RA, Richards J, et al. Vimentin and CP49/ filensin form distinct networks in the lens which are independently modulated during lens fibre cell differentiation. Journal of Cell Science. 1995;108(4):1397-406.
  • Matsuyama M, Tanaka H, Inoko A, Goto H, Yonemura S, Kobori K, et al. Defect of mitotic vimentin phosphorylation causes microophthalmia and cataract via aneuploidy and senescence in lens epithelial cells. The Journal of biological chemistry. 2013;288(50):35626-35.
  • Sredy J, Roy D, Spector A. Identification of two of the major phosphorylated polypeptides of the bovine lens utilizing a lens cAMP-dependent protein kinase system. Current Eye Research. 1984;3(12):1423-31.
  • Menko AS, Bleaken BM, Libowitz AA, Zhang L, Stepp MA, Walker JL. A central role for vimentin in regulating repair function during healing of the lens epithelium. Molecular biology of the cell. 2014;25(6):776-90.
  • FitzGerald PG. Lens intermediate filaments. Experimental eye research. 2009;88(2):165-72.
  • Rafferty NS, Scholz DL. Comparative study of actin filament patterns in lens epithelial cells. Are these determined by the mechanisms of lens accommodation? Current Eye Research. 1989;8 (6):569-79.
  • Ireland M, Maisel H. A family of lens fiber cell specific proteins. Lens and Eye Toxicity Research. 1989;6(4):623-38.
  • Bagchi M, Katar M, Lo WK, Yost R, Hill C, Maisel H. ERM proteins of the lens. Journal of Cellular Biochemistry. 2004;92(3):626-30.
  • Kam Z, Volberg T, Geiger B. Mapping of adherens junction components using microscopic resonance energy transfer imaging. Journal of Cell Science. 1995;108(3):1051-62.
  • Rafferty NS, Scholz DL, Goldberg M, Lewyckyj M. Immunocytochemical evidence for an actin-myosin system in lens epithelial cells. Experimental eye research. 1990;51(5):591-600.
  • Ireland M, Lieska N, Maisel H. Lens actin: Purification and localization. Experimental eye research. 1983;37(4):393-408.
  • Lee A, Fischer RS, Fowler VM. Stabilization and remodeling of the membrane skeleton during lens fiber cell differentiation and maturation. Developmental Dynamics. 2000;217(3):257-70.
  • Kuwabara T. Microtubules in the Lens. Archives of Ophthalmology. 1968;79(2):189-95.
  • Allen DP, Low PS, Dola A, Maisel H. Band 3 and ankyrin homologues are present in eye lens: Evidence for all major erythrocyte membrane components in same non-erythroid cell. Biochemical and Biophysical Research Communications. 1987;149(1):266-75.
  • Cheng C, Nowak RB, Gao J, Sun X, Biswas SK, Lo W-K, et al. Lens ion homeostasis relies on the assembly and/or stability of large connexin 46 gap junction plaques on the broad sides of differentiating fiber cells. American Journal of Physiology - Cell Physiology. 2015;308(10):C835- C47.
  • Bloemendal H, de Jong W, Jaenicke R, Lubsen NH, Slingsby C, Tardieu A. Ageing and vision: structure, stability and function of lens crystallins. Progress in biophysics and molecular biology. 2004;86(3):407-85.
  • Rhodes JD, Sanderson J. The mechanisms of calcium homeostasis and signalling in the lens. Exp Eye Res. 2009;88(2):226-34.
  • Ringvold A, Sagen E, Bjerve KS, Folling I. The calcium and magnesium content of the human lens and aqueous humour. A study in patients with hypocalcemic and senile cataract. Acta ophthalmologica. 1988;66(2):153-6.
  • Delamere NA, Dean WL. Distribution of lens sodium- potassium-adenosine triphosphatase. Investigative ophthalmology & visual science. 1993;34(7):2159-63
  • Tamiya S, Dean WL, Paterson CA, Delamere NA. Regional distribution of Na,K-ATPase activity in porcine lens epithelium. Investigative ophthalmology & visual science. 2003;44(10):4395- 9.
  • Bozulic LD, Dean WL, Delamere NA. The influence of protein tyrosine phosphatase-1B on Na,K-ATPase activity in lens. Journal of cellular physiology. 2004;200(3):370-6.
  • Delamere NA, Tamiya S. Lens ion transport: from basic concepts to regulation of Na,K-ATPase activity. Experimental eye research. 2009;88(2):140-3.
  • Vaghefi E, Malcolm DT, Jacobs MD, Donaldson PJ. Development of a 3D finite element model of lens microcirculation. Biomedical engineering online. 2012;11:69.
  • White TW, Bruzzone R, Goodenough DA, Paul DL. Mouse Cx50, a functional member of the connexin family of gap junction proteins, is the lens fiber protein MP70. Molecular biology of the cell. 1992;3(7):711-20.
  • Paul DL, Ebihara L, Takemoto LJ, Swenson KI, Goodenough DA. Connexin46, a novel lens gap junction protein, induces voltage-gated currents in nonjunctional plasma membrane of Xenopus oocytes. The Journal of Cell Biology. 1991;115 (4):1077-89.
  • Musil LS, Beyer EC, Goodenough DA. Expression of the gap junction protein connexin43 in embryonic chick lens: Molecular cloning, ultrastructural localization and post-translational phosphorylation. The Journal of Membrane Biology. 1990;116(2):163-75.
  • Mathias RT, White TW, Gong X. Lens Gap Junctions in Growth, Differentiation, and Homeostasis. Physiological Reviews. 2010;90 (1):179-206.
  • Gilula NB, Goodenough DA. Gap Junctional CommunicationThe crystalline lens. A system networked by gap junctional intercellular communication. Seminars in Cell Biology. 1992;3 (1):49-58.
  • Francis P, Chung J-J, Yasui M, Berry V, Moore A, Wyatt MK, et al. Functional impairment of lens aquaporin in two families with dominantly inherited cataracts. Human Molecular Genetics. 2000;9(15):2329-34.
  • Talian JC, Zelenka PS. Calpactin I in the differentiating embryonic chicken lens: mRNA levels and protein distribution. Developmental Biology. 1991;143(1):68-77. 14. Watanabe M, Kobayashi H, Rutishauser U, Katar M, Alcala J, Maisel H. NCAM in the differentiation of embryonic lens tissue. Developmental Biology. 1989;135(2):414-23.
  • Talian JC, Zelenka PS. Calpactin I in the differentiating embryonic chicken lens: mRNA levels and protein distribution. Developmental Biology. 1991;143(1):68-77. 14. Watanabe M, Kobayashi H, Rutishauser U, Katar M, Alcala J, Maisel H. NCAM in the differentiation of embryonic lens tissue. Developmental Biology. 1989;135(2):414-23.
  • Leonard M, Zhang L, Zhai N, Cader A, Chan Y, Nowak RB, et al. Modulation of N-cadherin junctions and their role as epicenters of differentiation-specific actin regulation in the developing lens. Developmental Biology. 2011;349 (2):363-77.
  • Vendra VP, Khan I, Chandani S, Muniyandi A, Balasubramanian D. Gamma crystallins of the human eye lens. Biochimica et biophysica acta. 2016;1860(1 Pt B):333-43.
  • Lubsen NH, Aarts HJ, Schoenmakers JG. The evolution of lenticular proteins: the beta- and gamma- crystallin super gene family. Prog Biophys Mol Biol. 1988;51(1):47-76.
  • Wistow G. Evolution of a protein superfamily: relationships between vertebrate lens crystallins and microorganism dormancy proteins. J Mol Evol. 1990;30(2):140-5
  • Lampi KJ, Ma Z, Hanson SRA, Azuma M, Shih M, Shearer TR, et al. Age-related Changes in Human Lens Crystallins Identified by Two- dimensional Electrophoresis and Mass Spectrometry. Experimental Eye Research. 1998;67 (1):31-43.
  • Ecroyd H, Carver JA. Crystallin proteins and amyloid fibrils. Cellular and molecular life sciences : CMLS. 2009;66(1):62-81.
  • Horwitz J, Bova MP, Ding LL, Haley DA, StewartPL. Lens alpha-crystallin: function and structure. Eye (London, England). 1999;13 ( Pt 3b):403-8.
  • Wistow GJ, Piatigorsky J. Lens crystallins: the evolution and expression of proteins for a highly specialized tissue. Annual review of biochemistry. 1988;57:479-504.
  • Wistow G. The human crystallin gene families. Human Genomics. 2012;6(1):26-.
  • Andley UP. Crystallins in the eye: Function and pathology. Progress in retinal and eye research. 2007;26(1):78-98.
  • Huang C-H, Wang Y-T, Tsa C-F, Chen Y-J, Lee J-S, Chiou S-H. Phosphoproteomics characterization of novel phosphorylated sites of lens proteins from normal and cataractous human eye lenses. Moleculer Vision. 2011;17:186-96.
  • Hoehenwarter W, Klose J, Jungblut PR. Eye lens proteomics. Amino acids. 2006;30(4):369-89.
Süleyman Demirel Üniversitesi Tıp Fakültesi Dergisi-Cover
  • ISSN: 1300-7416
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1994
  • Yayıncı: SDÜ Basımevi / Isparta
Sayıdaki Diğer Makaleler

Transrektal Prostat İğne Biyopsisinin Erektil Fonksiyon Üzerine Etkisi

OSMAN ERGÜN

Braket Çevresindeki Mine Demineralizasyonunun Er- YAG Lazer ve Florid Uygulaması Sonrası İn-Vitro Olarak Değerlendirilmesi

Rıdvan OKŞAYAN

Hemostatik Ajan Olarak Kullanılan Mecsina Hemostopper©, Ankaferd Blood Stopper® ve Traneksamik Asidin İmmunolojik Farklılıklarının Hücre Kültürü Çalışması ile Araştırılması

Mehmet Kemal TUMER, Mustafa CICEK

Escherichia coli’nin Üriner Sistem Epitelyal Hücrelerinde Mikronükleus Testi ile Genotoksik Etkisinin İncelenmesi

Muhammet Yusuf TEPEBAŞI, Pınar ASLAN KOŞAR, Okan SANCER

Süleyman Demirel Üniversitesi Tıp Fakültesi Dönem-3 Öğrencilerinin Farmakoloji Eğitimine Etki Eden Faktörlerin İncelenmesi

MEHTAP SAVRAN, HALİL AŞCI, Mekin SEZİK, YONCA SÖNMEZ

Histomorphometric Evaluation of Bone Regeneration in Peri-Implant Osseous Defects Treated With Titanium Prepared Platelet Rich Fibrin: An Experimental Study in a Rabbit Model

Turan Emre KUZU, HAKAN ÖZDEMİR

Tiroid Karsinomu Olgularında İnce İğne Aspirasyonu Bulguları

Perihan UDUL, FİGEN BARUT, Şükrü Oğuz ÖZDAMAR

Effect Of The Inflammatory Bowel Diseases On Choroidal And Macular Thickness

Fahrettin AKAY, Halil GENÇ, Yusuf Çağdaş KUMBUL

İnflamatuar Bağırsak Hastalıklarının Koroi̇dal ve Makular Kalınlık Üzeri̇ne Etkisi

Yusuf Çağdaş KUMBUL, Halil GENÇ, Fahrettin AKAY

Gömülü 3. Molar Di̇şleri̇n Operati̇f Zorluk Skoruna ve Kompli̇kasyonlara Göre Değerlendi̇ri̇lmesi

NESRİN SARUHAN