Reduced Graphene Oxide/α‐Cyclodextrin‐Based Electrochemical Sensor: Characterization and Simultaneous Detection of Adenine, Guanine and Thymine

Graphene, the rising star of carbon nanomaterials, is a single layer of sp2‐bonded carbon atoms patterned in a 2D honeycomb network. Thanks to its unique features, graphene has attracted enormous attention and it has arisen various applications in the fields of optical and electrochemical sensors. In the present work, reduced graphene oxide/alpha cyclodextrin (rGO/α‐CD) is proposed as a nanocomposite for individual and simultaneous detection of adenine, guanine and thymine. rGO/α‐CD has been characterized by FT‐IR, Raman spectroscopy, AFM, HR‐TEM and SEM techniques. Cyclic voltammetry, differential pulse voltammetry and chronoamperometry techniques were utilized for detection of adenine, guanine and thymine. The limit of detection (LOD) values for adenine, guanine and thymine were calculated to be 145.5, 38.9 and 52.9 nmol L‐1, respectively. The results show that the developed sensor can be utilized for the determination of adenine, guanine and thymine in human serum, indicating its promising application in the analysis of real samples.

ndirgenmiş Grafen Oksit/α‐Siklodekstrin Esaslı Elektrokimyasal Sensör: Karakterizasyon ve Adenin, Guanin ve Timinin Eşzamanlı Tayini

Karbon nano materyallerin yükselen yıldızı olan grafen, sp2‐hibritleşmesi yapmış ve iki boyutlu bal peteği şeklinde düzenlenmiş olan karbon atomlarının bir atom kalınlığında oluşturduğu tabakadır. Benzersiz özellikleri sayesinde, grafen büyük ilgi uyandırmış olup optik ve elektrokimyasal sensörler alanında çok çeşitli uygulama alanlarının gelişmesine katkı sağlamıştır. Bu çalışmada, adenin, guanin ve timinin tek başına ve eş zamanlı tayinlerini gerçekleştirebilmek için indirgenmiş grafen oksit/alfa siklodekstrin (rGO/α‐CD) nano kompozit malzemesi önerilmektedir. rGO/α‐CD materyali FT‐IR, Raman spektroskopisi, AFM, HR‐TEM ve SEM teknikleri ile karakterize edilmiştir. Adenin, guanin ve timin tayini için dönüşümlü voltametri, diferansiyel puls voltametrisi ve kronoamperometri teknikleri kullanılmıştır. Adenin, guanin ve timin için en düşük tayin limitleri 145.5, 38.9 ve 52.9 nmol L‐1 olarak hesaplanmıştır. Çalışma sonuçları, önerilen bu sensörün adenin, guanin ve timinin insan serumu içerisinde tayin edilebileceğini ve dolayısıyla gerçek numune analizinde umut vadeden bir uygulama olduğunu göstermiştir.

___

Chen, J., Chen, S., Weng, W., Li, Y., Yeh, S. 2013. Simultaneous Detection of DNA Bases on Electrodes Chemically Modified with Graphene ‐ New Fuchsin. International Journal of Electrochemical Science, 8, 3963–3973.

Thangaraj, R., Senthil Kumar, A. 2013. Simultaneous Detection of Guanine and Adenine in DNA and Meat Samples Using Graphitized Mesoporous Carbon Modified Electrode. Journal of Solid State Electrochemistry, 17(3), 583–590.

Miller, J. N.; Miller, J. C. 2005. Statistics and Chemometrics for Analytical Chemistry. 5th edition. Pearson Education/Prentice‐Hall, Harlow, 285s.

Shrivastava A, Gupta VB. 2011. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles of Young Scientists, 2(1), 21‐25.

Park, S., Ruoff, R. S. 2009. Chemical Methods for the Production of Graphenes. Nature Nanotechnology, 4(4), 217–224.

Peng, L., Xu, Z., Liu, Z., Wei, Y., Sun, H., Li, Z., Zhao, X., Gao, C. 2015. An Iron‐Based Green Approach to 1‐H Production of Single‐Layer Graphene Oxide. Nature Communucations, 6(5716), 1‐9.

Graf, D., Molitor, F., Ensslin, K., Stampfer, C., Jungen, A., Hierold, C., Wirtz, L. 2007. Spatially Resolved Raman Spectroscopy of Single‐ and Few‐Layer Graphene. Nano Letters, 7(2), 238–242.

Ferrari, A. C., Robertson, J. 2000. Interpretation of Raman Spectra of Disordered and Amorphous Carbon. Physical Review B, 61(20), 14095– 14107.

Li, J., Kuang, D., Feng, Y., Zhang, F., Xu, Z., Liu, M., Wang, D. 2013. Electrochemical Tyrosine Sensor Based on a Glassy Carbon Electrode Modified with a Nanohybrid Made from Graphene Oxide and Multiwalled Carbon Nanotubes. Microchimica Acta, 180(1), 49–58.

Erdem, A. 2007. Nanomaterial‐Based Electrochemical DNA Sensing Strategies. Talanta, 74, 318–325.

Anu Prathap, M. U., Srivastava, R., Satpati, B. 2013. Simultaneous Detection of Guanine, Adenine, Thymine, and Cytosine at polyaniline/MnO2 Modified Electrode. Electrochimica Acta, 114, 285–295.

Zhan, F., Gao, F., Wang, X., Xie, L., Gao, F., Wang, Q. 2016. Determination of lead(II) by Adsorptive Stripping Voltammetry Using a Glassy Carbon Electrode Modified with β‐Cyclodextrin and Chemically Reduced Graphene Oxide Composite. Microchimica Acta, 183, 1169–1176.

Jiang, Z., Li, G., Zhang, M. 2016. Electrochemical Sensor Based on Electro‐Polymerization of β‐ Cyclodextrin and Reduced‐Graphene Oxide on Glassy Carbon Electrode for Determination of Gatifloxacin. Sensors and Actuators B Chemical, 228, 59–65.

Zhang, M., Zhao, H. T., Yang, X., Dong, A. J., Zhang, H., Wang, J., Liu, G. Y., Zhai, X. C. 2016. A Simple and Sensitive Electrochemical Sensor for New Neonicotinoid Insecticide Paichongding in Grain Samples Based on β‐Cyclodextrin‐Graphene Modified Glassy Carbon Electrode. Sensors and Actuators B Chemical, 229, 190–199.

Hui, Y., Ma, X., Hou, X., Chen, F., Yu, J. 2015. Silver Nanoparticles‐β‐Cyclodextrin‐Graphene Nanocomposites Based Biosensor for Guanine and Adenine Sensing. Ionics, 21(6), 1751–1759.

Alarcón‐Angeles, G., Pérez‐López, B., Palomar‐ Pardave, M., Ramírez‐Silva, M. T., Alegret, S., Merkoçi, A. 2008. Enhanced Host–guest Electrochemical Recognition of Dopamine Using Cyclodextrin in the Presence of Carbon Nanotubes. Carbon, 46(6), 898–906.

Zor, E., Esad Saglam, M., Alpaydin, S., Bingol, H. 2014. A Reduced Graphene Oxide/α‐ Cyclodextrin Hybrid for the Detection of Methionine: Electrochemical, Fluorometric and Computational Studies. Analytical Methods, 6(16), 6522‐6530.

Feng, W. L., Liu, C., Lu, S. Y., Zhang, C. Y., Zhu, X. H., Liang, Y., Nan, J. M. 2014. Electrochemical Chiral Recognition of Tryptophan Using A Glassy Carbon Electrode Modified with Beta‐ Cyclodextrin and Graphene. Microchimica Acta, 181(5‐6), 501–509.

Shahgaldian, P., Pieles, U. 2006. Cyclodextrin Derivatives as Chiral Supramolecular Receptors for Enantioselective Sensing. Sensors, 6, 593– 615.

Zor, E., Bingol, H., Ramanaviciene, A., Ramanavicius, A., Ersoz, M. 2015. An Electrochemical and Computational Study for Discrimination of D‐ And L‐Cystine by Reduced Graphene Oxide/Beta‐Cyclodextrin. Analyst, 140(1), 313–321.

Ambrosi, A., Chua, C. K., Bonanni, A., Pumera, M. 2014. Electrochemistry of Graphene And Related Materials. Chemical Reviews, 114(14), 7150–7188.

Tan, L., Zhou, K.‐G., Zhang, Y.‐H., Wang, H.‐X., Wang, X.‐D., Guo, Y.‐F., Zhang, H.‐L. 2010. Nanomolar Detection of Dopamine in The Presence of Ascorbic Acid At Β‐ Cyclodextrin/Graphene Nanocomposite Platform. Electrochemistry Communications, 12(4), 557–560.

Guo, Y., Guo, S., Ren, J., Zhai, Y., Dong, S., Wang, E. 2010. Cyclodextrin Functionalized Graphene Nanosheets with High Supramolecular Recognition Capability: Synthesis and Host ‐ Guest Inclusion for Enhanced Electrochemical Performance. ACS Nano, 4, 4001–4010.

Geim, A. K. 2011. Random Walk to Graphene (Nobel Lecture). Angewandte Chemie International Edition, 50(31), 6966–6985.

Novoselov, K. S., Fal′ko, V. I., Colombo, L., Gellert, P. R., Schwab, M. G., Kim, K. 2012. A Roadmap for Graphene. Nature, 490(7419), 192–200.

Geim, A. K., Novoselov, K. S. 2007. The Rise of Graphene. Nature Materials, 6(3), 183–191.

Ferrari, A. C., Bonaccorso, F., Fal’ko, V., Novoselov, K. S., Roche, S., Boggild, P., Borini, S., Koppens, F. H. L., Palermo, V., Pugno, N., Garrido, J. A., Sordan, R., Bianco, A., Ballerini, L., Prato, M., Lidorikis, E., Kivioja, J., Marinelli, C., Ryhanen, T., Morpurgo, A., Coleman, J. N., Nicolosi, V., Colombo, L., Fert, A., Garcia‐Hernandez, M., Bachtold, A., Schneider, G. F., Guinea, F., Dekker, C., Barbone, M., Sun, Z., Galiotis, C., Grigorenko, A. N., Konstantatos, G., Kis, A., Katsnelson, M., Vandersypen, L., Loiseau, A., Morandi, V., Neumaier, D., Treossi, E., Pellegrini, V., Polini, M., Tredicucci, A., Williams, G. M., Hee Hong, B., Ahn, J.‐H., Min Kim, J., Zirath, H., van Wees, B. J., van der Zant, H., Occhipinti, L., Di Matteo, A., Kinloch, I. A., Seyller, T., Quesnel, E., Feng, X., Teo, K., Rupesinghe, N., Hakonen, P., Neil, S. R. T., Tannock, Q., Lofwander, T., Kinaret, J. 2015. Science and Technology Roadmap for Graphene, Related Two‐Dimensional Crystals, and Hybrid Systems. Nanoscale, 7(11), 4598–4810.
Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1300-7688
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1995
  • Yayıncı: Süleyman Demirel Üniversitesi