Parçalı Sabit Argümana Fonksiyonel Bagımlı Kuvvetli Bir Yay-Kütle Sisteminin Green ˘ Fonksiyonu ve Periyodik Çözümleri

Bu çalı¸smada, genelle¸stirilmi¸s parçalı sabit argümanlı ve genelle¸stirilmi¸s parçalı sabit argümana fonksiyonel bagımlı sönümlü yay-kütle sistemleri dü¸sünülmü¸stür. Bu ˘ yay-kütle sistemleri sırasıyla Ax(γ(t)) ve Ax(γ(t))+h(t, xt , xγ(t) ) formlarında parçalı sabit kuvvetlere sahiptirler. Bu yay-kütle sistemleri ayrık denklemlere dönü¸stürülmeden incelenmi¸stir. Bu inceleme yapılırken, genelle¸stirilmi¸s parçalı sabit argümana fonksiyonel bagımlı ˘ diferansiyel denklemler için elde edilen sonuçlardan [1] faydalanılmı¸stır. Genelle¸stirilmi¸s parçalı sabit argümana fonksiyonel bagımlı yay-kütle sisteminin çözümlerinin varlık ve ˘ tekligi için yeterli ko¸sullar verilmi¸stir. Green fonksiyonu yardımıyla fonksiyonel kuvvetli ˘ yay-kütle sisteminin periyodik çözümü olu¸sturulmu¸stur ve tekligi ispatlanmı¸stır. Elde ˘ edilen teorik sonuçlar örneklendirilmi¸stir. Bu örnek, belli parametreler için genelle¸stirilmi¸s parçalı sabit argümana fonksiyonel bagımlı sönümlü yay-kütle sisteminin Green ˘ fonksiyonu ile ifade edilebilen tek bir periyodik çözüme sahip oldugunu göstermi¸stir.

Green’s Function and Periodic Solutions of a Spring-Mass System in which the Forces are Functionally Dependent on Piecewise Constant Argument

In this paper, damped spring-mass systems with generalized piecewise constant argument and with functional dependence on generalized piecewise constant argument are considered. These spring-mass systems have piecewise constant forces of the forms Ax(γ(t)) and Ax(γ(t)) +h(t, xt , xγ(t) ), respectively. These spring-mass systems are examined without reducing them into discrete equations. While doing this examination, we make use of the results which have been obtained for differential equations with functional dependence on generalized piecewise constant argument in [1]. Sufficient conditions for the existence and uniqueness of solutions of the spring-mass system with functional dependence on generalized piecewise constant argument are given. The periodic solution of the spring-mass system which has functional force is created with the help of the Green’s function, and its uniqueness is proved. The obtained theoretical results are illustrated by an example. This illustration shows that the damped spring-mass systems with functional dependence on generalized piecewise constant argument with proper parameters has a unique periodic solution which can be expressed by Green’s function.

___

  • Hale, J. 1971. Functional Differential Equations. Springer, New-York.
  • Geyer, H., Seyfarth, A., Blickhan, R. 2005. Springmass running: simple approximate solution and application to gait stability. Journal of Theoretical Biology, 232(2005), 315-328.
  • Cao, Z. J. 2009. One and Two-Dimensional Mass Spring Computational Model for Phononic Band Gap Analysis. University of Waterloo, Applied Science in Electrical and Computer Engineering, Master Thesis, 104s, Waterloo, Ontario, Canada.
  • Rabita, G., Couturier, A., Dorel, S., Hausswirth, C., Meur, Y.-L. 2013. Changes in spring-mass behavior and muscle activity during an exhaustive run at V O˙ 2max. Journal of Biomechanics, 46(2013), 2011- 2017.
  • Blickhan, R. 1989. The spring-mass model for running and hopping. J. Biomechanics, 22(11/12)(1989), 1217-1227.
  • Pellicer, M., Sola`-Morales, J. 2004. Analysis of a viscoelastic spring-mass model. J. Math. Anal. Appl., 294(2004), 687-698.
  • McDonald, F. A. 1980. Deceptively simple harmonic motion: A mass on a spiral spring. Am. J. Phys., 48(1980), 189.
  • Sears, F. W. 1969. A demonstration of the springmass correction. Am. J. Phys., 37(1969), 645.
  • French, A. P. 1964. Vibrations and Waves. W. W. Norton and Company. Inc. New York, the United States of America.
  • Triana, C. A., Fajardo, F. 2013. Experimental study of simple harmonic motion of a spring-mass system as a function of spring diameter. Revista Brasileira de Ensino de F ´sica, 35(4)(2013), 4305.
  • Wang, H. 2004. Positive periodic solutions of functional differential equations. J. Differential Equations, 202(2004), 354-366.
  • Liu, X.-L., Li, W.-T. 2004. Existence and uniqueness of positive periodic solutions of functional differential equations. J. Math. Anal. Appl., 293(2004), 28-39.
  • Cheng, S. S., Zhang, G. 2001. Existence of positive periodic solutions for non-autonomous functional differential equations. Electron. J. Differential Equations, 59(2001), 1-8.
  • Wiener, J. 1993. Generalized Solutions of Functional Differential Equations. World Scientific, Singapore.
  • Bao, G., Wen, S., Zeng, Zh. 2012. Robust stability analysis of interval fuzzy CohenGrossberg neural networks with piecewise constant argument of generalized type. Neural Networks, 33(2012), 32-41.
  • Akhmet, M. U., Arugaslan, D., Yılmaz, E. 2010. Stability analysis of recurrent neural networks with piecewise constant argument of generalized type. Neural Networks, 23(2010), 805-811.
  • Akhmet, M. U., Arugaslan, D., Yılmaz, E. 2011. Method of Lyapunov functions for differential equations with piecewise constant delay. J. Comput. Appl. Math., 235(2011), 4554-4560.
  • Akhmet, M. U., Arugaslan, D. 2009. Lyapunov- Razumikhin method for differential equations with piecewise constant argument. Discrete Contin. Dyn. Syst., 25(2009), 457-466.
  • Akhmet, M. U., Buyukadali, C. 2008. Periodic solutions of the system with piecewise constant argument in the critical case. Comput. Math. Appl., 56(2008), 2034-2042.
  • Akhmet, M. U., Buyukadali, C. 2010. Differential equations with a state-dependent piecewise constant argument. Nonlinear Analysis: TMA, 72(2010), 4200- 4210.
  • Akhmet, M. U. 2007. Integral manifolds of differential equations with piecewise constant argument of generalized type. Nonlinear Anal., 66(2007), 367-383.
  • Akhmet, M. U. 2007. On the reduction principle for differential equations with piecewise constant argument of generalized type. J.Math. Anal. Appl., 336(2007), 646-663.
  • Akhmet, M. U. 2006. On the integral manifolds of the differential equations with piecewise constant argument of generalized type. Proceedings of the Conference on Differential and Difference Equations at the Florida Institute of Technology, August 1-5, 2005, Melbourne, Florida, Editors: Agarval, R. P. and Perera, K., Hindawi Publishing Corporation, 11-20.
  • Cooke, K. L., Wiener, J. 1991. A survey of differential equation with piecewise continuous argument. Lecture Notes in Math., Springer, Berlin, 1475(1991), 1-15.
  • Wang, Y., Yan, J. 1997. Necessary and sufficient condition for the global attractivity of the trivial solution of a delay equation with continuous and piecewise constant arguments. Appl. Math. Lett., 10(1997), 91-96.
  • Aftabizadeh, A. R., Wiener, J., Xu, J.-M. 1987. Oscillatory and periodic solutions of delay differential equations with piecewise constant argument. Proc. Amer. Math. Soc., 99(1987), 673-679.
  • Wiener, J., Cooke, K. L. 1989. Oscillations in systems of differential equations with piecewise constant argument. J. Math. Anal. Appl., 137(1989), 221-239.
  • Wiener, J., Lakshmikantham, V. 2000. A damped oscillator with piecewise constant time delay. Nonlinear Stud., 7(2000), 78-84.
  • Shen, J. H., Stavroulakis, I. P. 2000. Oscillatory and nonoscillatory delay equation with piecewise constant argument. J. Math. Anal. Appl., 248(2000), 385-401.
  • Dai, L., Singh, M. C. 1994. On oscillatory motion of spring-mass systems subjected to piecewise constant forces. Journal of Sound and Vibration, 173(2)(1994), 217-231.
  • Seifert, G. 2000. Almost periodic solutions of certain differential equations with piecewise constant delays and almost periodic time dependence. J. Differential Equations, 164(2000), 451-458.
  • [12] Xia, Y., Huang, Z., Han, M. 2007. Existence of almost periodic solutions for forced perturbed systems with piecewise constant argument. J. Math. Anal. Appl., 333(2007), 798-816.
  • Wang, G. 2007. Periodic solutions of a neutral differential equation with piecewise constant arguments. J. Math. Anal. Appl., 326(2007), 736-747.
  • Aftabizadeh, A. R., Wiener, J. 1988. Oscillatory and periodic solutions for systems of two first order linear differential equations with piecewise constant argument. Appl. Anal., 26(1988), 327-338.
  • Cooke, K. L., Wiener, J. 1984. Retarded differential equations with piecewise constant delays. J. Math. Anal. Appl., 99(1984), 265-297.
  • Yuan, R. 2002. The existence of almost periodic solutions of retarded differential equations with piecewise constant argument. Nonlinear Analysis, Theory, Methods and Applications, 48(2002), 1013-1032.
  • Akhmet, M. U. 2008. Stability of differential equations with piecewise constant arguments of generalized type. Nonlinear Anal., 68(2008), 794-803.
  • Akhmet, M. U. 2011. Nonlinear Hybrid Continuous/Discrete Time Models. Atlantis Press, Amsterdam, Paris.
  • Atay, F. M. 2001. Periodic Solutions of DelayDifferential Equations with a Restorative Condition. Preprint 1998. Final version appeared in Nonlinear Analysis TMA, 45(5)(2001), 555-576.
  • Diblik, J. 1998. Behaviour of solutions of linear differential equations with delay. Archivum Mathematicum (Brno), 34(1998), 31-47.
  • Györi, I., Ladas, G. 1991. Oscillation Theory of Delay Differential Equations with Applications. Oxford University Press, New York.
  • Gopalsamy, K. 1992. Stability and Oscillation in Delay Differential Equations of Population Dynamics. Kluwer Academic Publishers, Dordrecht.
  • Akhmet, M. U. 2014. Quasilinear retarded differential equations with functional dependence on piecewise constant argument. Communications On Pure And Applied Analysis, 13(2)(2014), 929-947.