Dereceli ve Derecesiz InXGa1‐XN Güneş Hücresi Yapılarındaki Mozaik Kusurların Analizi

Bu çalışmada, dereceli InxGa1‐xN (A) (10.5 ≤ x ≤ 18.4) ve derecesiz (B) InxGa1‐ xN (13.6 ≤ x ≤ 24.9) örnekleri c yönelimli safir alttaş üzerine Metal Organik Kimyasal Buhar Biriktirme Tekniği ile büyütüldü. InGaN/GaN güneş hücresi yapıları Yüksek Çözünürlüklü X‐Ray Kırınım(HRXRD), Fotolüminesans (PL) ve Ultraviyole (UV), Akım yoğunluğu ve potansiyel ölçümleri (JV) ile analiz edildi. XRD sonuçlarına göre dereceli InGaN yapısı düşük FWHM değerlerine sahiptir. PL ölçümlerinde ise dereceli yapıdaki GaN’ın ortalama yarıgenişlik değeri daha dar ve InGaN’ ın pik genişliği dereceli yapı olması nedeniyle daha geniştir. UV ölçümlerinden dereceli yapının genişleyen bant aralığına sahip olduğu görüldü. JV ölçümlerinden ise dereceli yapının performansının daha yüksek olduğu belirlendi.

Analysis of the Mosaic Defects in Graded and Non Graded InxGa1‐xN Solar Cell Structures

In this study, graded (A) InxGa1‐xN (10.5 ≤ x ≤ 18.4) and non graded (B) InxGa1‐xN (13.6 ≤ x ≤ 24.9) samples are grown on c‐oriented sapphire substrate using the Metal Organic Chemical Vapour Deposition (MOCVD) technique. The structural, optical and electrical features of the grown InGaN/GaN solar cell structures are analyzed using High Resolution X‐Ray Diffraction (HRXRD), Photoluminescense (PL), Ultraviolet (UV), current density and potential (JV) measurements. According to the HRXRD results; it is determined that the InGaN layer of the graded structure has a lower FWHM (Full width at half maximum) value. From the PL measurements, it is observed that the GaN half‐width peak value of the graded sample is narrower and the InGaN peak width value of the graded sample is larger. From UV measurements, that the graded sample has a greater band range. JV measurements determine that the performance of the graded structure is higher.

___

  • Cai, X. M., Zeng, S. W., Li, X., Zhang, J. Y., Lin, S., Lin, A. K, Chen, M., Liu, W. J., Wu, S. X., Zhang, B.P. 2011. Dependence of the Property of InGaN p‐i‐n Solar Cells on the Light Concentration and Temperature. IEEE Transactions on electron devices, 58,3905‐3911.
  • Mahala, P., Behura, S. K., Ray, A., Dhanavantri, C., Jani, O. 2012. The Effect of Indium Composition on Open‐Circuit Voltage of InGaN Thin‐Film Solar Cell: An Analytical and Computer Simulation Study. AIP Conf. Proc., 1451, 85‐87.
  • Valdueza‐Felip, S., Mukhtarova, A., Grenet, L., Bougerol, C., Durand, C., Eymery, J., Monroy, E. 2014. Improved conversion efficiency of as‐ grown InGaN/GaN quantum‐well solar cells for hybrid integration. Appl. Phys.Exp., 7, 1‐3.
  • Pankove, J. I., Miller, E. I., Berkeyheiser, J. E. 1971. GaN Electroluminescent Diodes. RCA Review, 32(3), 383‐392.
  • Wu, J., Walukiewicz, W., Li, S.X., Armitage, R., Ho, J. C., . Weber, E. R, Haller, E. E., Lu, H., Schaff, W. J., Barcz, A., Jakiela R. 2004. Effects of electron concentration on the optical absorption edge of InN. Applied Physics Letters, 84(15), 2805‐2807.
  • Fu, S.P. 2004. Effective mass of InN epilayers. Applied Physics Letters, 85(9), 1523‐1525.
  • Zhu, X.L., Guo, L.W., Yu, N.S., Peng, M.Z., Yan, J.F., Ge, B.H., Jia, H.Q., Chen, H., Zhou, J.M. 2006. Characteristics of High In‐content InGaN Alloys Grown by MOCVD, Chinese Physics Letters, 23(12), 3369‐3371.
  • Butcher, K.S.A., Tansley, T.L. 2005. InN latest development and a review of the band‐gap controversy, Superlattices and Microstructures, 38(1), 1‐37.
  • Schuster, M., Gervais, P. O., Jobst, B., Hosler, W., Averbeck, R., Riechert, H., Iberlkand, A., Stommer, R. 1999. Determination of the chemical composition of distorted InGaN GaN heterostructures from x‐ray diffraction data. Journal of Physics D‐Applied Physics, 32(10A), A56‐A60.
  • Sun, Y., Cho, Y., Suh, E.K., Lee, H. J., Choi, R.J., Hahn, Y.B. 2003. High brightness blue and green light emitting quantum wells with graded‐In content profile grown by MOCVD,Phys. stat. sol. (c),7,2270‐2273.
  • Hu, C., Lo, I, Hsu, Y.,Shih, C., Pang, W., Wang, Y., Lin, Y., Yang, C., Tsai, C., Hsu, G. Z. L. 2016. Growth of InGaN/GaN quantum wells with graded InGaN buffer for green to yellow light emitters Japanese Journal of Applied Physics, 55(8),1‐6.
  • Yamaguchi, T., Morioka, C., Mizuo, K., Hori, M., Araki, T., Nanishi, Y., Suzuki, A. 2003. Growth of InN and InGaN on Si substrate for solar cell applications, Compound Semiconductors: Post‐ Conference Proceedings International Symposium, 25‐27 August, USA, 214.
  • Brown, G.F., Ager III, J.W., Walukiewicz, W., Wu, J. 2010. Finite element simulations of compositionally graded InGaN solar cells. Solar Energy Materials and Solar Cells, 94, 478‐483.
  • Kendrick Chito, E. 2008. Revisiting Nitride Semiconductors, Epilayers, p‐type Doping and Nanowires. University of Canterbury, Electrical and Electronic Engineering, NewZeland, 49s.
  • Ugo, L. et al. 2012. Increasing the reliability of solid state lighting system via self healing approaches. Microelectronic Reliability, 52(1),71‐89.
  • Nanishi, Y., Saito, Y., Yamaguchi, T. 2003. RF‐ Molecular Beam Epitaxy Growth and Properties of InN and Related Alloys. Jpn. J. Appl. Phys., 142, 2549‐2559.
  • De Vos, A. 1992. Endoreversible Thermodynamics of Solar Energy Conversion, Oxford University Press, Oxford, 90s.
  • King, R. R., Law, D. C., Edmondson, K. M., Fetzer, C. M., Kinsey, G. S., Yoon, H., Sherif, R. A., Karam, N. H. 2007. 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. App. Phys. Lett., 90, 1‐3.
  • Yamaguchi, M., Takamoto, T., Araki, K. 2006. Super high‐efficiency multi‐junction and concentrator solar cells. Solar Energy Mater Solar Cells, 90(18,19), 3068–3077.
  • Luque, A., Marti, A. 2001. A metallic intermediate band high efficiency solar cell. Prog. Photovoltaics, 9, 73‐86.
  • Omkar, J., Ian, F. 2007. Design and characterization of GaN/InGaN solar cells. Appl.Phys.Lett., 91, 1‐3.
  • Matsuoka, T., Okamoto, H., Nakao, M., Harima, H., Kurimoto, E. 2002. Optical bandgap energy of wurtzite InN. Appl. Phys. Lett., 81,1246‐1248.
  • Wu., J., Walukiewicz., W., Yu., K. M., Ager III., J. W., Haller, E.E., Lu, Schaff, H. W. J.,Saito, Y. , Nanishi, Y. 2002. Unusual properties of the fundamental band gap of InN, Appl. Phys. Lett., 80, 3967‐3969.
  • Davydov, V.Yu., Klochikhin, A.A., Seisyan, R.P., Emtsev, V.V., Ivanov, S.V., Bechstedt, F., Furthmuller, J., Harima, H., Mudryi, A.V., Aderhold, J. , Semchinova, O., Graul, J. 2002. Absorption and Emission of Hexagonal InN Evidence of Narrow Fundamental Band Gap. Phys. Status Solidi B, 229,R1‐R3.
  • Arslan, E., Demirel, P., Cakmak, H., Ozturk, M.K., Ozbay, E. 2014. Mosaic Structure Characterization of the AlInN Layer Grown on Sapphire Substrate. Advances in Materials Science and Engineering, 2014, 1‐11.
  • Nakamura, S., Pearton, S., Fasol, G. 2000.The Blue Laser Diode, Springer, Berlin,56s.
Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1300-7688
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1995
  • Yayıncı: Süleyman Demirel Üniversitesi