Edremit Körfezi’nden yakalanan barbunya (Mullus barbatus) ve bakalyaro (Merluccius merluccius) balıklarında alifatik hidrokarbonların incelenmesi

Bu çalışmada, 2015 yılı bahar ve güz dönemlerinde Edremit Körfezi’nden (Batı Ege, Türkiye) trolle yakalanan barbunya (Mullus barbatus) ve bakalyaro (Merluccius merluccius) balıklarında alifatik hidrokarbon seviyeleri incelenmiştir. Bu amaçla, her iki dönemde körfezin 3 farklı bölgesinden trolle örnekleme yapılmıştır. Yapılan analizler sonucunda, barbunya balıklarındaki toplam alifatik hidrokarbon (TAH) seviyeleri bakalyarolardakinden daha yüksek olduğu bulunmuştur. Barbunya örneklerinde hesaplanan TAH seviyeleri 456-2090 ng/g iken bakalyarolarda 61-746 ng/g aralığında ölçülmüştür. Genel olarak barbunyalardaki yüksek TAH seviyesinin, bu türe ait eksrakte olabilen organik madde (EOM) miktarı ile ilişkili olduğu düşünülmektedir. Korelasyon, kümeleme ve birincil bileşen analiz sonuçlarına göre genellikle barbunyalarda TAH seviyelerine etki eden bileşiklerin C11 ve C12 alifatik hidrokarbon bileşikleri iken bakalyarolarda C15, C17 ve Pristan (Pristane) bileşiklerinin olduğu görülmüştür. Bu sonuçlar Edremit Körfezi’ndeki balıklarda bulunan alifatik hidrokarbonların kaynağının, bakalyarolarda biyojenik iken barbunyalarda kesin olmamakla birlikte petrojenik olabileceğine işaret etmektedir.

Investigation of aliphatic hydrocarbons in red mullet (Mullus barbatus) and European hake (Merluccius merluccius) fish caught from the Edremit Bay (Western Turkey)

n this study, aliphatic hydrocarbon levels were investigated in red mullet and european hake fish caught by trawler from Edremit Bay (Western Aegean, Turkey) in spring and autumn 2015. For this purpose, trawling was carried out from 3 different regions of the Edremit Bay in both seasons. As a result of the analyzes, total aliphatic hydrocarbon (TAH) levels in red mullet were found to be higher than that of european hake. TAH concentrations found for red mullet were in the range of 456-2090 ng/g, while it was found in the range of 61-746 ng/g for european hake. In general, TAH concentrations in red mullet were higher than that of european hake for both seasons. In addition, EOM amounts were found higher in red mullet like TAH. According to correlation, cluster and primary component analysis results, it was observed that the compounds affecting TAH levels in red mullet are C11 and C12 aliphatic hydrocarbon compounds, while european hake have C15, C17 and Pristane compounds. These results indicate that the source of aliphatic hydrocarbons in Edremit Bay fish is biogenic in european hake samples, although not exact, it may be petrogenic in red mullet samples.

___

  • Ahmed, M. T., Loutfy, N., Shoieb, M., & Mosleh, Y. Y. (2014). Residues of aliphatic and polycyclic aromatic hydrocarbons in some fish species of Lake Temsah, Ismailia, Egypt: an analytical search for hydrocarbon sources and exposure bioindicators. Human and Ecological Risk Assessment: An International Journal, 20(6), 1659-1669.
  • Ahmed, O. E., Eldesoky, A. M., & El Nady, M. M. (2019). Evaluation of petroleum hydrocarbons and its impact on organic matters of living organisms in the northwestern Gulf of Suez, Egypt. Petroleum Science and Technology, 37(24), 2441–2449. DOI:10.1080/10916466.2019.1655443
  • Akalın, S. (2014). Investigations of the age and growth characteristics of European Hake (Merluccius merluccius L., 1758) in Edremit Bay. Ege Journal of Fisheries and Aquatic Sciences, 31(4), 195–203. DOI:10.12714/egejfas.2014.31.4.04
  • Azis, M. Y., Yelmiza, Asia, L., Piram, A., Bucharil, B., Doumenq, P., & Syakti, A. D. (2016). Occurrence of aliphatic and polyaromatic hydrocarbons (PAHs) in Mytillus galloprovincialis from the traditional market in Marseille, France, by Gas Chromatography triplequadropole tandem Mass Spectrometry (GC-QQQ/MS). IOP Conference Series: Materials Science and Engineering, 107(1), 1-9. DOI:10.1088/1757-899X/107/1/012008
  • Balıkesir İli Çevre Durum Raporu (2016). T.C. Balıkesir Valiliği Çevre ve Şehircilik İl Müdürlüğü, Balıkesir İli 2015 Yılı Çevre Durum Raporu, 136pp.
  • Blumer, M., Mullin, M. M., & Thomas, D. W. (1964). Pristane in the marine environment. Helgoländer Wissenschaftliche Meeresuntersuchungen, 10(1), 187–201. DOI:10.1007/BF01626106
  • Blumer, M., & Sass, J. (1972). Oil pollution: Persistence and degradation of spilled fuel oil. Science, 176(4039), 1120–1122. DOI:10.1126/science.176.4039.1120
  • Brassell, S. C., Eglinton, G., Maxwell, J. R., & Philp, R. P. (1978). Natural background of alkanes in the aquatic environment. In 0. Hutzinger et al. (Eds.), Aquatic pollutants: transformation and biological effects. (pp. 69- 86). Pergamon Press Ltd. DOI:10.1016/b978-0-08-022059-8.50010-8
  • Brown, J., Boehm, P., Cook, L., Trefry, J., Smith, W., & Durell, G. (2010). cANIMIDA Task 2: Hydrocarbon and metal characterization of sediments in the cANIMIDA study area. OCS Study MMS 2010-004, Final report. Contract, (M04PC00001), 235pp.
  • Carls, M.G., Wertheimer, A.C., Short, J.W., Smolowitz, R.M., & Stegeman, J.J., 1996. Contamination of juvenile pink and chum salmon by hydrocarbons is Prince William Sound after the Exxon Valdez oil spill. In: Rice, S.D., Spies, R.B., Wolfe, D.A., Wright, B.A. (Eds.), Proceedings of the Exxon Valdez oil spill symposium. American Fisheries Society, Bethesda, Maryland, pp. 593–607.
  • Carro, N., Cobas, J., & Maneiro, J. (2006). Distribution of aliphatic compounds in bivalve mollusks from Galicia after the Prestige oil spill: Spatial and temporal trends. Environmental Research, 100(3), 339–348. DOI:10.1016/j.envres.2005.09.003
  • Ceyhan, T., Akyol, O., & Ünal, V. (2006). Edremit Körfezi (Ege Denizi) Kıyı Balıkçılığı Üzerine Bir Araştırma. Su Ürünleri Dergisi, 23(3), 373-375.
  • Chukwuka, K. S., Alimba, C. G., Ataguba, G. A., & Jimoh, W. A. (2018). The Impacts of Petroleum Production on Terrestrial Fauna and Flora in the Oil-Producing Region of Nigeria. In The Political Ecology of Oil and Gas Activities in the Nigerian Aquatic Ecosystem (pp. 125-142). Academic Press.
  • Clark Jr, R. C. (1966). Saturated hydrocarbons in marine plants and sediments, MSc Thesis, Massachusetts Institute of Technology), 97pp.
  • Colombo, J. C., Cappelletti, N., Migoya, M. C., & Speranza, E. (2007). Bioaccumulation of anthropogenic contaminants by detritivorous fish in the Río de la Plata estuary: 1-Aliphatic hydrocarbons. Chemosphere, 68(11), 2128–2135. DOI:10.1016/j.chemosphere.2007.02.001
  • Çelik, Ö., & Torcu, H. (2000). Ege Denizi, Edremit Körfezi Barbunya Balıǧı (Mullus barbatus Linnaeus, 1758)’nin Biyolojisi Üzerine Araştirmalar. Turkish Journal of Veterinary and Animal Sciences, 24(3), 287–295.
  • Darilmaz, E., & Kucuksezgin, F. (2012). Distribution of aliphatic and aromatic hydrocarbons in red mullet (Mullus barbatus) and annular sea bream (Diplodus annularis) from the Izmir Bay (Eastern Aegean). Bulletin of Environmental Contamination and Toxicology, 88(2), 283–289. DOI:10.1007/s00128-011-0467-9
  • Emara, H. I., Said, T. O., El Naggar, N. A., & Shreadah, M. A. (2008). Aliphatic and polycyclic hydrocarbon compounds as chemical markers for pollution sources in relation to physico-chemical characteristics of the eastern harbour (Egyptian Mediterranean Sea). Egyptian Journal of Aquatic Research, 1-19.
  • Ferguson, A. L., Debenedetti, P. G., & Panagiotopoulos, A. Z. (2009). Solubility and molecular conformations of n-Alkane chains in water. Journal of Physical Chemistry B, 113(18), 6405–6414. DOI:10.1021/jp811229q
  • Harvey, H. R., & Taylor, K. A. (2017). Alkane and polycyclic aromatic hydrocarbons in sediments and benthic invertebrates of the northern Chukchi Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 144 (August), 52–62. DOI:10.1016/j.dsr2.2017.08.011
  • Le Dréau, Y., Jacquot, F., Doumenq, P., Guiliano, M., Bertrand, J. C., & Mille, G. (1997). Hydrocarbon balance of a site which had been highly and chronically contaminated by petroleum wastes of a refinery (from 1956 to 1992). Marine Pollution Bulletin, 34(6), 456–468. DOI:10.1016/S0025-326X(96)00139-7
  • Lin, X., Zhu, L.P., Wang, Y., Wang, J.B., Xie, M.P., Ju, J.T., Mäusbacher, R., Schwalb, A., 2008. Environmental changes reflected by n-alkanes of lake core in Nam Co on the Tibetan Plateau since 8.4 kaB.P. Chinese Science Bulletin, 53, 3051–3057. DOI:10.1007/s11434-008-0313-6
  • Luquet, P., Cravedi, J. P., Tulliez, J., & Bories, G. (1984). Growth reduction in trout induced by naphthenic and isoprenoid hydrocarbons (dodecylcyclohexane and pristane). Ecotoxicology and Environmental Safety, 8(3), 219–226. DOI:10.1016/0147-6513(84)90025-3
  • Miyake, T., Nakazawa, F., Sakugawa, H., Takeuchi, N., Fujita, K., Ohta, K., & Nakawo, M. (2006). Concentrations and source variations of n-alkanes in a 21 m ice core and snow samples at Belukha glacier, Russian Altai mountains. Annals of Glaciology, 43, 142-147.
  • Mzoughi, N., Chouba, L., & Lespes, G. (2010). Assessment of total aromatic hydrocarbons, aliphatic and polycyclic aromatic hydrocarbons in surface sediment and fish from the Gulf of Tunis (Tunisia). Soil and Sediment Contamination, 19(4), 467–486. DOI:10.1080/15320383.2010.486052
  • Payne, J. F., Fancey, L. L., Hellou, J., King, M. J., & Fletcher, G. L. (1995). Aliphatic hydrocarbons in sediments: a chronic toxicity study with winter flounder (Pleuronectes americanus) exposed to oil well drill cuttings. Canadian Journal of Fisheries and Aquatic Sciences, 52(12), 2724– 2735. DOI:10.1139/f95-861
  • Short, J., & Harris, P. (2005). Pristane monitoring in mussels: Distribution of pristane in the neritic ecosystem of the Northern Gulf of Alaska. Anchorage (AK): NOAA, National Marine Fisheries Service, Auke Bay Laboratory Juneau, AK. Exxon Valdez, 10-54.
  • Steinhauer, M. S., & Boehm, P. D. (1992). The composition and distribution of saturated and aromatic hydrocarbons in nearshore sediments, river sediments, and coastal peat of the Alaskan Beaufort Sea: Implications for detecting anthropogenic hydrocarbon inputs. Marine Environmental Research, 33(4), 223–253. DOI:10.1016/0141-1136(92)90140-H
  • UNEP/FAO/IOC/IAEA. (1993). Guidelines for monitoring chemical contaminants in the sea using marine organisms. Reference methods for marine pollution studies, (6).
  • US EPA. (2018). Region 4 Human Health Risk Assessment Supplemental Guidance. U.S. Environmental Protection Agency, (January), 98. Tarihinde adresinden erişildi https://www.epa.gov/sites/production/files/2018- 03/documents/era_regional_supplemental_guidance_report-march2018_update.pdf
  • Ünlüoğlu, A., Akalın, S., & Çakır, D. T. (2008). Edremit Körfezi Demersal Balıkçılık Kaynakları Üzerine Bir Araştırma. Su Ürünleri Dergisi, 25(1), 63-69.
  • Vidal, N. P., Manzanos, M. J., Goicoechea, E., & Guillén, M. D. (2016). Farmed and wild sea bass (Dicentrarchus labrax) volatile metabolites: A comparative study by SPME-GC/MS. Journal of the Science of Food and Agriculture, 96(4), 1181–1193. DOI:10.1002/jsfa.7201
  • Wakeham, S. G. (1990). Algal and bacterial hydrocarbons in particulate matter and interfacial sediment of the Cariaco Trench. Geochimica et Cosmochimica Acta, 54(5), 1325–1336. DOI:10.1016/0016-7037(90)90157-G
  • Wang, Z., & Christensen, J. H. (1964). Crude Oil and Refined Product Fingerprinting: Applications. Environmental Forensics: Contaminant Specific Guide, 409–464. DOI:10.1016/B978-012507751-4/50039-2
  • Wang, Z., Fingas, M., & Page, D. S. (1999). Oil spill identification. Journal of Chromatography A. 843(1-2), 369-411. DOI:10.1016/S0021-9673(99)00120-X
  • Wang, S., Liu, G., Yuan, Z., & Lam, P. K. S. (2019). Occurrence and trophic transfer of aliphatic hydrocarbons in fish species from Yellow River Estuary and Laizhou Bay, China. Science of the Total Environment, 696. 134037. DOI:10.1016/j.scitotenv.2019.134037
  • Webster, L., Russell, M., Hussy, I., Packer, G., Dalgarno, E. J., Craig, A., A., Moore, D.C., Jaspars, M. & Moffat, C. F. (2012). Environmental Assessment of the Elgin Gas Field Incident–Report 5, Fish and Sediment. Marine Scotland Science Report 17/12, 24pp
Su Ürünleri Dergisi-Cover
  • ISSN: 1300-1590
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1984
  • Yayıncı: Aynur Lök
Sayıdaki Diğer Makaleler

Marmara Denizi’ndeki domoik asit seviyelerinin tuzluluk-sıcaklık değişimlerinin bir fonksiyonu olarak değerlendirilmesi

Fuat DURSUN

Kayalıköy Barajı’nın (Kırklareli/Türkiye) planktonik mikrokrustase (Copepoda, Cladocera) tür çeşitliliği, bolluğu ve mevsimsel dağılımı

Hüseyin GÜHER, Burak ÖTERLER

Length-weight relationships of fishes caught by stationary uncovered pound nets in the coastal waters of Saros Bay, North Aegean Sea (Turkey)

SERHAT ÇOLAKOĞLU

Effects of feed rations containing egg powder in different proportions on growth performance, feed utilization, body composition and survival rate of rainbow trout (Oncorhynchus mykiss Walbaum, 1792) fry

Özay KÖSE, Huriye ARIMAN KARABULUT, İLKER ZEKİ KURTOĞLU, Akif ER

Farklı oranlarda yumurta tozu içeren yem rasyonlarının yavru gökkuşağı alabalığının (Oncorhynchus mykiss walbaum, 1792) büyüme performansı, yem kullanımı, vücut kompozisyonu ve yaşam oranına etkileri

İlker Zeki KURTOĞLU, Akif ER, Özay KÖSE, Huriye Arıman KARABULUT

The diversity, abundance and seasonal distribution of planktonic microcrustacean (Copepoda, Cladocera) in Kayalıköy Reservoir (Kırklareli/Turkey)

Hüseyin GÜHER, Burak ÖTERLER

An appendage abnormality in the first left pereiopod of red swamp crayfish (Procambarus clarkii) reared in the laboratory conditions

ONUR KARADAL

Doğal ürün fukoksantin trendleri

Bahar ASLANBAY GÜLER, Esra İMAMOĞLU

Balıklarda bağışıklık sistemi, mukozal bağışıklıklık ve IL-1β, IL-18 ve TNF-α proenflamatuvar sitokinlerinin işlevleri

Serdar KİLERCİOĞLU

Türkiye’deki egzotik tilapya türlerinin mevcut durumu

ERDOĞAN ÇİÇEK