Kısa dönem antrenmanın iskelet kasında kaveolin ve VEGF ekspresyonu üzerine etkisi

Dayanıklılık egzersizi iskelet kası ve kardiyovasküler sistemde adaptif değişikliklere yol açmaktadır. Egzersiz anjiyogenezin önemli bir mediatörüolan vasküler endotelyal büyüme faktörünü (VEGF)indüklemektedir. Kaveolin-1 ve -3, kaveoller olarakbilinen hücre membran oluşumlarını oluşturan protein ünitelerdir ve kaveolin-reseptör-postreseptöretkileşimleri yoluyla sinyal iletiminin regülasyonunda aktif rol alırlar. Kaveolin-1in VEGF ile indüklenen sinyal kaskadında yer aldığı gösterilmiştir.Çalışmada kısa dönem egzersiz antrenmanının farklılif kompozisyonlarından oluşan iskelet kaslarındaVEGF ve kaveolin-1 ve -3 mRNA düzeyleri üzerindekietkisinin incelenmesi amaçlanmıştır. Çalışmada3-4 aylık Wistar Albino türü erkek sıçanlara 10 günsüreyle koşu bandına ve egzersize alıştırma programı uygulandı. Takiben denekler alıştırma (n=6) ve antrenman grubu (n=6) olarak ikiye ayrıldı. Antrenman gruburatlara 3 günlük kısa dönem dayanıklılık antrenmanıyaptırıldı (20-25 metre/dakika, %10 eğim, 85 dakika/ gün). Koşu bandı deneylerine katılmayan ratlardanüçüncü deney grubu olarak kontrol grubu oluşturuldu(n=6). Deneklerin gastroknemius (kırmızı ve beyaz kı- sımları), plantaris ve soleus kas örneklerinden elde edilen total RNAlarından ters-trankripsiyon PCR ile cDNAsentezlendi.$VEGF_{164} ,VEGF_{188'}$ kaveolin-1, kaveolin-3 veGAPDH PCR amplifikasyonunu takiben agaroz jel elektroforezi ve ardından UV kamera görüntülerinden bantyoğunluk analizleri yapıldı. Antrenman grubunda kontrol ve alıştırma gruplarına göre gastroknemius kasıkırmızı kısımda $VEGF_{164}$ mRNA düzeyinde artış olduğugösterilmiştir (Kruskal Wallis Test: p=0.033, posthocTukey HSD: kontrol vs antrenman p=0.014, kontrol vsalıştırma p=0.995, alıştırma vs antrenman p=0.016).Kaveolin-1 ve -3 düzeylerinde değişiklik saptanmamıştır.$VEGF_{164}$mRNAsındaki artış anjiyogenik mekanizmaların tetiklendiğine işaret etmektedir. Anjiyogenik mekanizmalarda kaveolin-VEGF etkileşiminin anlaşılabilmesiiçin ek çalışmalar gerekmektedir.

Effect of short term training on caveolin and VEGF expressions in skeletal muscle

Endurance training leads to adaptational changesin skeletal muscle and cardiovascular system.Exercise induces vascular endothelial growth factor;one of the important mediator of angiogenesis.Caveolin-1 and -3 are the protein units forming the cellmembrane formations as called the caveolae and takean active part in the signal transduction regulationby caveolin-receptor-postreseptor interactions. Ithas been shown that caveolin-1 takes place in VEGFinduced signal cascades. The aim of the study was toinvestigate the effect of short term training on mRNAlevels of VEGF and caveolin-1 and -3 in the skeletalmuscles composed of different fiber compositions.3-4 months aged Wistar Albino rats were accustomedto the treadmill and exercise within a 10 days ofadaptation training program. Then rats were dividedgroup (n=6). Training group rats underwent a 3 daysshort term endurance training program (20-25 meter/ minute, %10 inclination, 85 minute/day). A controlgroup was formed as a third experimental groupfrom the rats that did not participate in any of thetreadmill experiments (n=6). The total RNA obtainedfrom the gastrocnemius (red and white portions),plantaris and soleus muscles, was used to synthesizecDNA via reverse transcription PCR method. Following$VEGF_{164} ,VEGF_{188'}$ caveolin-1, caveolin-3 and GAPDH PCRamplifications agarose gel electrophoresis and banddensity analysis of UV camera images were performed.$VEGF_{164}$ mRNA levels of gastrocnemius muscle redportion were induced in training group comparing tothe control and adaptation groups (Kruskal WallisTest: p=0.033, posthoc Tukey HSD: control vs trainingp=0.014, adaptation vs training p=0.016, control vsadaptation p=0.995). Caveolin-1 and caveolin-3 levelswere unchanged. The increase of $VEGF_{164}$mRNAlevels indicates that the angiogenic mechanisms weretriggered. In order to understand the interaction ofcaveolin-VEGF in angiogenic mechanisms, additionalstudies are needed.

___

  • Adair TH, Gay WJ, Montani JP. (1990). Growth regulation of the vasculature system: evidence for a metabolic hypothesis. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 259, R393–R404.
  • Amaral SL, Papanek PE, Greene AS. (2001). Angiotensin II and VEGF are involved in angiogenesis induced by short-term exercise training. American Journal of Physiology Heart and Circulatory Physiology, 281, H1163–H1169.
  • Amaral SL, Sanchez LS, Chang AJ, Rossoni LV, Michelini LC. (2008). Time course of training-induced microcirculatory changes and of VEGF expression in skeletal muscles of spontaneously hypertensive female rats. Brazilian Journal of Medical and Biological Research, 41(5), 424-31.
  • Annex BH, Torgan CE, Lin P, Taylor DA, Thompson MA, Peters KG ve diğ. (1998). Induction and maintenance of increased VEGF protein by chronic motor nerve stimulation in skeletal muscle. American Journal of Physiology Heart and Circulatory Physiology, 274, H860– H867.
  • Barnard RJ, Duncan HW, Thorstensson AT. (1974). Heart rate responses of young and old rats to various levels of exercise. Journal of Applied Physiology, 36(4), 472-474.
  • Bejma J, Ji LL. (1999). Aging and acute exercise enhance free radical generation in rat skeletal muscle. Journal of Applied Physiology, 87, 465-470.
  • Breen EC, Johnson EC, Wagner H, Tseng HM, Sung LA, Wagner PD. (1996). Angiogenic growth factor mRNA responses in muscle to a single bout of exercise. Journal of Applied Physiology, 81, 355–361.
  • Brutsaert TD, Gavin TP, Fu Z, Breen EC, Tang K, Mathieu-Costello O ve diğ. (2002). Regional differences in expression of VEGF mRNA in rat gastrocnemius following 1 hr exercise or electrical stimulation. BMC Physiology, 2, 8.
  • Delp MD, Duan C. (1996). Composition and size of type I, IIA, IID/X, and IIB fibers and citrate synthase activity of rat muscle. Journal of Applied Physiology, 80, 261–270.
  • Ding YH, Li J, Zhou Y, Rafols JA, Clark JC, Ding Y. (2006). Cerebral angiogenesis and expression of angiogenic factors in aging rats after exercise. Current Neurovascular Research, 3(1), 15-23.
  • Gavin TP, Spector DA, Wagner H, Breen EC, Wagner PD. (2000a). Nitric oxide synthase inhibition attenuates the skeletal muscle VEGF mRNA response to exercise. Journal of Applied Physiology, 88, 1192–1198.
  • Gavin TP, Spector DA, Wagner H, Breen EC, Wagner PD. (2000b). Effect of captopril on skeletal muscle angiogenic growth factor responses to exercise. Journal of Applied Physiology, 88, 1690–1697.
  • Gavin TP, Wagner PD. (2001). Effect of short-term exercise training on angiogenic growth factor gene responses in rats. Journal of Applied Physiology, 90, 1219–1226.
  • Giusti B, Marini M, Rossi L, Lapini I, Magi A, Capalbo A, ve diğ. (2009). Gene expression profile of rat left ventricles reveals persisting changes following chronic mild exercise protocol: implications for cardioprotection. BMC Genomics, 10, 342.
  • Grande-Garcia A, del Pozo MA. (2008). Caveolin-1 in cell polarization and directional migration. European Journal of Cell Biology, 87, 641–7.
  • Griffoni C, Spisni E, Santi S, Riccio M, Guarnieri T, Tomasi V. (2000). Knockdown of caveolin-1 by antisense oligonucleotides impairs angiogenesis in vitro and in vivo. Biochemical and Biophysical Research Communications, 276(2), 756-761.
  • Gustafsson T, Knutsson A, Puntschart A, Kaijser L, Nordqvist AC, Sundberg CJ ve diğ. (2002). Increased expression of vascular endothelial growth factor in human skeletal muscle in response to short-term onelegged exercise training. Pflügers Archiv European Journal of Physiology, 444(6), 752-759.
  • Gustafsson T, Puntschart A, Kaijser L, Jansson E, Sundberg CJ. (1999). Exercise-induced expression of angiogenesis related transcription and growth factors in human skeletal muscle. American Journal of Physiology Heart and Circulatory Physiology, 276, H679–H685.
  • Hang J, Kong L, Gu J-W, Adair TH. (1995). VEGF gene expression is upregulated in electrically stimulated rat skeletal muscle. American Journal of Physiology Heart and Circulatory Physiology, 269, H1827–H1831.
  • Hardin CD, Vallejo J. (2006). Caveolins in vascular smooth muscle: form organizing function. Cardiovascular Research, 69, 808–815.
  • Harris MB, Starnes JW. (2001). Effects of body temperature during exercise training on myocardial adaptations. American Journal of Physiology Heart and Circulatory Physiology, 280, 2271-2280. 22. Hudlicka O, Brown M, Egginton S. (1992). Angiogenesis in skeletal and cardiac muscle. Physiological Reviews, 72, 369–417.
  • Kim HS, Kim HJ, Kim YS, Park SC, Harris R, Kim CK. (2009). Caveolin, GLUT4 and insulin receptor protein content in human arm and leg muscles. European Journal of Applied Physiology, 106(2), 173-9.
  • Kivelä R, Silvennoinen M, Lehti M, Jalava S, Vihko V, Kainulainen H. (2008). Exercise-induced expression of angiogenic growth factors in skeletal muscle and in capillaries of healthy and diabetic mice. Cardiovascular Diabetology, 7, 13.
  • Labrecque L, Royal I, Surprenant DS, Patterson C, Gingras D, Beliveau R. (2003). Regulation of vascular endothelial growth factor receptor-2 activity by caveolin-1 and plasma membrane cholesterol. Molecular Biology of the Cell, 14(1), 334–347.
  • Lee YI, Cho YJ, Kim MH, Kim KB, Lee DJ, Lee KS. (2006). Effects of exercise training on pathological cardiac hypertrophy related gene expression and apoptosis. European Journal of Applied Physiology, 97, 216-224.
  • Liao WX, Feng L, Zhang H, Zheng J, Moore TR, Chen DB. (2009). Compartmentalizing VEGF-induced ERK2/1 signaling in placental artery endothelial cell caveolae: a paradoxical role of caveolin-1 in placental angiogenesis in vitro. Molecular Endocrinology, 23(9), 1428-44.
  • Liu J, Wang XB, Park DS, Lisanti MP. (2002). Caveolin-1 expression enhances endothelial capillary tubule formation. The Journal of Biological Chemistry, 277, 10661–8.
  • Navarro A, Anand-Apte B, Parat MO. (2004). A role for caveolae in cell migration. The FASEB Journal, 18, 1801–11.
  • Ng YS, Rohan R, Sunday ME, Demello DE, D’Amore PA. (2001). Differential expression of VEGF isoforms in mouse during development and in the adult. Developmental Dynamics, 220, 112–121. 31. Oh YS, Kim HJ, Ryu SJ, Cho KA, Park YS, Park H, ve diğ. (2007). Exercise type and muscle fiber specific induction of caveolin-1 expression for insulin sensitivity of skeletal muscle. Experimental and Molecular Medicine, 39(3), 395-401.
  • Pan YM, Yao YZ, Zhu ZH, Sun XT, Qiu YD, Ding YT. (2006). Caveolin-1 is important for nitric oxide-mediated angiogenesis in fibrin gels with human umbilical vein endothelial cells. Acta Pharmacologica Sinica, 27(12), 1567–1574.
  • Patel HH, Murray F, Insel PA. (2008). Caveolae as organizers of pharmacologically relevant signal transduction molecules. Annual. Review of Pharmacology and Toxicology, 48, 359–91.
  • . Penumathsa SV, Koneru S, Samuel SM, Maulik G, Bagchi D, Yet SF ve diğ. (2008). Strategic targets to induce neovascularization by resveratrol in hypercholesterolemic rat myocardium: role of caveolin-1, endothelial nitric oxide synthase, hemeoxygenase-1, and vascular endothelial growth factor. Free Radical Biology and Medicine, 45(7), 1027-34.
  • Richardson RS, Wagner H, Mudaliar SRD, Henry R, Noyszewski EA, Wagner PD. (1999). Human VEGF gene expression in skeletal muscle: effect of acute normoxic and hypoxic exercise. American Journal of Physiology Heart and Circulatory Physiology, 276, H2247–H2252.
  • Richardson RS, Wagner H, Mudaliar SRD, Saucedo E, Henry R, Wagner PD. (2000). Exercise adaptation attenuates VEGF gene expression in human skeletal muscle. American Journal of Physiology Heart and Circulatory Physiology, 279, H772–H778.
  • Sonveaux P, Martinive P, DeWever J, Batova Z, Daneau G, Pelat M, ve diğ. (2004). Caveolin-1 expression is critical for vascular endothelial growth factor-induced ischemic hindlimb collateralization and nitric oxide-mediated angiogenesis. Circulation Research, 95(2), 154-61.
  • Suhr F, Brixius K, de Marées M, Bölck B, Kleinöder H, Achtzehn S, ve diğ. (2007). Effects of short-term vibration and hypoxia during high-intensity cycling exercise on circulating levels of angiogenic regulators in humans. Journal of Applied Physiology, 103(2), 474- 83.
  • Takahashi H, Shibuya M. (2005). The vascular endothelial growth factor (VEGF) / VEGF receptor system and its role under physiological and pathological conditions. Clinical Science,109, 227-241.
  • Tang K, Xia FC, Wagner PD, Breen EC. (2010). Exercise-induced VEGF transcriptional activation in brain, lung and skeletal muscle. Respiratory Physiology and Neurobiology, 170(1), 16-22.
  • Vasile E, Qu H, Dvorak HF, Dvorak AM. (1999). Caveolae and vesiculovacuolar organelles in bovine capillary endothelial cells cultured with VPF/VEGF on floating Matrigel-collagen gels. Journal of Histochemistry and Cytochemistry, 47, 159–67.
  • Yokomori H, Oda M, Yoshimura K, Nagai T, Ogi M, Nomura M,ve diğ. (2003). Vascular endothelial growth factor increases fenestral permeability in hepatic sinusoidal endothelial cells. Liver International, 23, 467–75.