Bulanık Ortamda Personel Seçimine Yönelik Karar Verme Süreci

Personel seçimi diğer seçim problemlerinde olduğu gibi bir karar verme problemidir. Karar verme sürecinde kesin olmayan ve belirsiz verileri barındıran bu seçim organizasyonlar için önemli bir konudur. Bu çalışmada lojistik sektöründe faaliyet gösteren bir firmanın personel seçim problemi ele alınmış ve problemin çözümüne yönelik Fuzzy Vikor yöntemine dayalı bir algoritma önerilmiştir. Alternatiflerin faktörler temelinde değerlendirilmesinde dilsel değişkenler kullanılmış ve bulanık ağırlıkların durulaştırılma işlemi ise BNP (Best Nonfuzzy Performance Value) yöntemi ile gerçekleştirilmiştir. Çalışma, Fuzzy Vikor yönteminin personel seçiminde etkin bir yöntem olarak kullanılabileceğini göstermiştir.

Decision Making Process for Personnel Selection Under Fuzzy Environment

As it is in all the selection problems, personnel selection is also a kind of a decision making problem. It requires the usage of the imprecise and unclear data in the decision-making process and it is an important subject for the organizations. In this study, the personnel selection problem of a firm which is active in the logistics sector was dealt and an algorithm based on the Fuzzy Vikor method, oriented towards the solution of the problem. In the assessment of the alternatives on the basis of the factors, linguistic variables were used and the refinement process of the fuzzy weights were realized with Best Nonfuzzy Performance Value (BNP) method. The study showed that the Fuzzy Vikor method could be used in personnel selection as an efficient method.    

___

  • Alguliyev, Rasim M., Ramiz M. Aliguliyev, and Rasmiyya S. Mahmudova (2015), "Multicriteria personnel selection by the modified fuzzy VIKOR method." The Scientific World Journal 2015.
  • Chen, C. T., Lin, C. T. and Huang, S. F. (2005), “A Fuzzy Approach for Supplier Evaluation and Selection in Supply Chain Management”, International Journal of Production Economies, pp. 1-13.
  • Chen, C.T. (2000), Extensions of the TOPSIS for Group Decision Making under Fuzzy Environment, Fuzzy Sets and Systems, 114, 1-9.
  • Chen, L.Y., and Wang, T.C. (2009), Optimizing Partners’ Choice in IS/IT Outsourcing Projects: The Strate¬gic Decision of Fuzzy VIKOR. International Jour¬nal of Production Economics, 120, 233-242.
  • Hsieh, T.Y., Lu, S.T., and Tzeng, G.H. (2004), Fuzzy MCDM Approach for Planning and Design Ten¬ders Selection in Public Office Buildings. Interna¬tional Journal of Project Management, 22, 573–584
  • Jayant, A., Gupta, P., Garg, S. K., and Khan, M. (2014), TOPSIS-AHP based approach for selection of reverse logistics service provider: a case study of mobile phone industry. Procedia engineering, 97, 2147-2156.
  • Kannan, G., Pokharel, S., and Kumar, P. S. (2009), A hybrid approach using ISM and fuzzy TOPSIS for the selection of reverse logistics provider. Resources, conservation and recycling, 54(1), 28-36.
  • Kelemenis, A., Ergazakis, K., and Askounis, D. (2011), Support managers’ selection using an extension of fuzzy TOPSIS. Expert Systems with Applications, 38(3), 2774-2782.
  • Lin, H. T. (2010), Personnel selection using analytic network process and fuzzy data envelopment analysis approaches. Computers & Industrial Engineering, 59(4), 937-944. Opricovic, S. (2011), Fuzzy VIKOR with an application to water resources planning. Expert Systems with Applications, 38(10), 12983-12990.
  • Opricovic, S. ve Tzeng, G.-H. (2004), “Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS”, European Journal of Operational Research, 156(2), ss.445–455.
  • Sanchez, J. A. and Gomez, A. T. (2003), Applications of Fuzzy Regression in Actuarial Analysis, The Journal of Risk and Insurance, 70(4), 665-699.
  • Soh, S. (2010), A decision model for evaluating third-party logistics providers using fuzzy analytic hierarchy process. African Journal of Business Management, 4(3), 339.
  • Zadeh, L.A. (1965), Fuzzy Sets, Information and Control, Sayı: 8, 338-353.
  • Zadeh, L.A. (1975), “The Concept of Linguistic Variable and its Application to Approximate Reasoning 1”Information Sciences, 8:199-249.
  • Zhang, S. F., and Liu, S. Y. (2011), A GRA-based intuitionistic fuzzy multi-criteria group decision making method for personnel selection. Expert Systems with Applications, 38(9), 11401-11405.