Aktif Karbon Üzerine Perteknetat Oksoanyonunun Denge İzoterm Modelinin Belirlenmesi

Adsorbent olarak aktif karbon kullanılaarak, sulu çözeltierden radyoaktif 99mTcO4- adsorpsiyonunda adsorpsiyon prosesinin mekanizmasını araştırmak için iyi bilinen dört izoterm modeli uygulandı. R2 değerlerine göre, deneysel verilerin dört izoterm modeli için de uygun olduğu bulundu. Ancak, deneysel ve modellerden hesaplanan adsorpsiyon kapasiteleri karşılaştırıldığında, deneysel verilere en uygun izoterm modellerinin Langmuir ve Temkin olduğu görülmüştür. Langmuir izoterm modelinden elde edilen maksimum tek katmanlı adsorpsiyon kapasitesi değeri 3170 µCi.g-1'dir. Uygun bir adsorpsiyon deneyini gösteren boyutsuz ayırma faktörü (RL) değeri  0.126'dır. Ayrıca Freundlich izoterm modelinde, uygun adsorpsiyonu gösteren adsorpsiyon yoğunluğu (n) değeri 1.72'dir. Adsorpsiyon proses ısısı Temkin İzoterm modelinden 724 J / mol olarak ve ortalama serbest enerjinin D-R izoterm modelinden 13.4 J / mol olarak  tahmin edilmiştir. Bu verilere göre, adsorpsiyon sürecinin fiziksel adsorpsiyon ile gerçekleştiği söylenebilir. Sonuçlar, aktif karbonun, sulu çözeltilerden radyoaktif 99mTcO4- 'ün uzaklaştırılması için başarılı bir adsorbent olduğunu gösterdi.

Determined of Equilibrium Adsorption Isotherm Model Pertechnetate Oxoanion Onto Activated Carbon

Four well-known isotherm models were appropriated to investigate the adsorption process mechanism in the radioactive 99mTcO4- adsorption from aqueous solution by using activated carbon as adsorbent. According to R2 values, the experimental data is found to be suitable for the four isotherm models. However, when the adsorption capacities of the experimental and calculated from models are compared, it has been seen that the isotherm models best suited to the experimental data are Langmuir and Temkin. The maximal monolayer adsorption capacity value founded from Langmuir isotherm model is 3170 µCi.g-1. The dimensionless separation factor (RL) value indicating a favorable adsorption experiment is 0.126. Also from Freundlich Isotherm model, the adsorption intensity (n) value which indicates favorable adsorption is 1.72. The heat of adsorption process was estimated from Temkin Isotherm model to be 724 J/mol and the mean free energy was estimated from D-R isotherm model to be 13.4 J/mol. According to these data, it can be said that the adsorption process is realized by physical adsorption. The results showed that the activated carbon was to be a successful adsorbent for the removal of radioactive 99mTcO4-   from aqueous solutions.

___

  • [1] Hercigonja Radmila V., Maksin Danijela D., Nastasovic´Aleksandra B., Trifunovic´ Snezˇana S., Glodic´Pavle B., Onjia Antonije E., 2012. Adsorptive Removal of Technetium-99 Using Macroporous Poly(GMA-co-EGDMA) Modified with Diethylene Triamine, Journal of Applied Polymer Science, Vol. 123, 1273–1282.[2] Shia Keliang, Houa Xiaolin, Roos Per, Wu Wangsuo, 2012. Determination of technetium-99 in environmental samples: A review, Analytica Chimica Acta, 709,1– 20.[3] A.D. Banavali, J.M. Raimondi, E.M. Moreno, D.E. McCurdy, 1995. The determination of technetium-99 in low-level radioactive waste, Radioact. Radiochem. 6, 26–35.[4] F. Wigley, P.E. Warwick, I.W. Croudace, J. Caborn, A.L. Sanchez, 1999. Optimised method for the routine determination of Technetium-99 in environmental samples by liquid scintillation counting, Anal. Chim. Acta, 380, 73–82.[5] Q.J. Chen, H. Dahlgaard, H.J.M. Hansen, A. Aarkrog, 1990. Determination of 99Tc in environmental samples by anion exchange and liquid-liquid extraction at controlled valency, Anal. Chim. Acta, 228, 163-167. [6] https://www.makaleler.com/teknesyum-nedir (in Turkish)[7]León, M.G., 2005. 99Tc in the Environment: Sources, Distribution and Methods, J. Nucl.Radiochem. Sci. 6, 253–259. [8] http://www.monrol.com.tr/tr/17/urun-detay/montek-99mo-99mtc-jenerator[9] Bishop, M.E., Dong, H., Kukkadapu, R.K., Liu, C., Edelmann, R.E., 2011. Bioreduction of Febearing clay minerals and their reactivity toward pertechnetate (Tc-99), Geochim. Cosmochim. Acta 75, 5229–5246.[10] Del Cul, G.D., Bostick, W.D., Trotter, D.R., Osborne, P.E., 1993. Technetium-99 removalfrom process solutions and contaminated groundwater. Sep. Sci. Technol. 28, 551–564.[11] USEPA, 2002. EPA facts about technetium-99. http://www.epa.gov/superfund/health/contaminants/radiation/pdfs/technetium.pdf (20.06.2013).[12]Kumar, S., Rawat, N., Kar, A.S., Tomar, B.S., Manchanda, V.K., 2011. Effect of humic acid on sorption of technetium by alumina, J. Hazard. Mater. 192, 1040–1045.[13] Kumar, P.S., Senthamarai, C., Sai Deepthi, A.S.L., Bharani, R., 2013. Adsorption isotherms,kinetics and mechanism of Pb(II) ions removal from aqueous solution using chemically modified agricultural waste. Can. J. Chem. Eng. 91, 1950–1956. [14] Liang, L., Gu, B., Yin, X., 1996. Removal of technetium-99 from contaminated ground water with sorbents and reductive materials. Sep. Technol. 6, 111–112.[15] Lieser, K.H., Bauscher, C.H., 1988. Technetium in the hydrosphere and in the geosphere. II.Influence of pH, of complexing agents and of some minerals on the sorption of technetium. Radiochim. Acta, 44, 125–128.[16] Farrell, J., Bostick, W., Jarabek, R.J., Fiedor, J., 1999. Electrosorption and reduction ofpertechnetate by anodically polarized magnetite. Environ. Sci. Technol., 33, 1244–1249.[17] Bors, J., Dultz, S., Riebe, B., 1999. Retention of radionuclides by organophilic bentonite.Eng. Geol., 54, 195–206.[18] Shakira, K., Ghoneimya, H.F., Hennawyb, I.T., Elkafrawyc, A.F., Beheira, S.G.E., Refaata, M., 2011. Simultaneous removal of chromotrope 2B and radionuclides from mixed radioactiveprocess wastewater using organo‐bentonite. Eur. J. Chem., 2, 83–93.[19] Suzuki, T., Fujii, Y., Yan,W., Mimura, H., Koyama, S., Ozawa, M., 2009. Adsorption behavior of VII group elements on tertiary pyridine resin in hydrochloric acid solution. J.Radioanal. Nucl. Chem., 282, 641–644.[20] Chen, J., Veltkamp, J.C., 2002. Pertechnetate removal by macroporous polymer impregnatedwith 2-nitrophenyl octyl ether (NPOE). Solvent Extr. Ion Exch., 20, 515–524.[21] Langmuir I., 1918. The adsorption of gases on plane surfaces of glass, mica and platinum, JACS, 40,1361-1403. [22] Freundlich H., 1906. Over the adsorption in solution, J. Phys. Chem., 57,1100–1107.[23] Temkin M.I., 1941. Adsorption equilibrium and the kinetics of processes on nonhomogeneous surfaces and in the interaction between adsorbed molecules. Zh. Fiz. Chim., 15, 296-332.[24] Dubinin M.M., 1947. The equation of the characteristic curve of activated charcoal vol. 55, InDokl. Akad. Nauk. SSSR., 55, 327-329.[25] Sarri1 S.P., Misaelides D., Zamboulis X., Gaona M., Altmaier H., Geckeis., 2016. Rhenium(VII) and technetium(VII) separation from aqueous solutions using a polyethylenimine–epichlorohydrin resin. J Radioanal Nucl Chem., 307:681–689.[26] Zu Jianhua, Liu Ruiqin, Zhang Jianqiu, Tang Fangdong, He Linfeng, 2016. Adsorption of Re and 99Tc by means of radiation-grafted weak basic anion exchange resin J Radioanal Nucl Chem., 310:229–237.[27]Mamdoh R., Mahmouda, A., Seliman F., 2014. Evaluation of silica/ferrocyanide composite asadual-functionmaterial for simultaneous removal of 137Cs and 99TcO4- from aqueous solutions Applied Radiation and Isotopes, 91,141–154.