Yüzey modifiye edilmiş farklı jenerasyon Jeffamine® D230 ve TREN-çekirdekli PAMAM dendrimerlerin kandesartan sileksetilin sulu çözünürlüğü üzerine etkisinin değerlendirilmesi

 Dendrimerler üç boyutlu, çok dallı, monodispers, yıldız şeklinde makromoleküllerdir. Dendrimerlerin fiziksel ve kimyasal özellikleri çekirdek, tekrar eden dallar ve yüzey fonksiyonel grupları gibi moleküler yapı elemanları tarafından belirlenmektedir. Bu yapı elemanlarının türü, dendrimerlerin moleküler kapsülleme ve çözünürlük gibi özelliklerinde belirleyici olmaktadır. Bu çalışmada, yeni nesil Jeffamin® D230 (D) ve TREN (T) çekirdekli poli(amido amin) PAMAM dendrimerlerin, jenerasyon büyüklüğü (D2-D4 ve T2-T4), konsantrasyonu (0-1.0 mM) ve yüzey fonksiyonel gruplarının (NH2, COOH, TRIS), kandesartan sileksetil (CC)’in sudaki çözünürlüğüne olan etkisi araştırıldı. CC’nin (sudaki çözünürlük = 0.0048 mg/mL) gözlemlenen sudaki çözünürlük artışı, D4.COOH (5.25 mg/mL)> T4.COOH (4.77 mg/mL)> D4.TRIS (0.44 mg/mL)> T4.TRIS (0.32 mg/mL)> D4.NH2 (0.11 mg/mL)> T4.NH2 (0.08 mg/mL) sırasındadır.

Evaluation of the effect of surface modified different generation Jeffamine® D230 and TREN-cored PAMAM dendrimers on the aqueous solubility of candesartan cilexetil

Dendrimers are three-dimensional, hyperbranched, monodisperse, and starburst macromolecules. The physical and chemical properties of dendrimers are attributed by their molecular construction units; namely, core, repetitive branching units, and terminal functional groups. The type of these units has also a determinant effect on their molecular encapsulation and solubility properties. In this study, the effect of generation size (D2-D4 and T2-T4), concentration (0-1.0 mM), and surface functional group (NH2, COOH, TRIS) of new-generation jeffamine® D230 (D) and TREN (T) core PAMAMs on the aqueous solubility of candesartan cilexetil (CC) was investigated. The observed solubility enhancement of CC (solubility in water = 0.0048 mg/mL) was in the order of D4.COOH (5.25 mg/mL)> T4.COOH (4.77 mg/mL)> D4.TRIS (0.44 mg/mL)> T4.TRIS (0.32 mg/mL)> D4.NH2 (0.11 mg/mL)> T4.NH2 (0.08 mg/mL).

___

  • [1] A.E. Beezer, A.S.H. King, I.K. Martin, J.C. Mitchel, L.J. Twyman and C.F. Wain, ''Dendrimers as potential drug carriers; encapsulation of acidic hydrophobes within water soluble PAMAM derivatives'', Tetrahedron, vol. 59, no. 22, pp. 3873-3880, 2003.
  • [2] M.-C. Jones and J.-C. Leroux, ''Polymeric micelles – a new generation of colloidal drug carriers'', European Journal of Pharmaceutics and Biopharmaceutics, vol. 48, no. 2, pp. 101-111, 1999.
  • [3] B. Felice, M.P. Prabhakaran, A.P. Rodríguez and S. Ramakrishna, ''Drug delivery vehicles on a nano-engineering perspective'', Materials Science and Engineering: C, vol. 41, no., pp. 178-195, 2014.
  • [4] T.F. Vandamme and L. Brobeck, ''Poly (amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide'', Journal of controlled release, vol. 102, no. 1, pp. 23-38, 2005.
  • [5] M.E. Fox, F.C. Szoka and J.M.J. Fréchet, ''Soluble Polymer Carriers for the Treatment of Cancer: The Importance of Molecular Architecture'', Accounts of Chemical Research, vol. 42, no. 8, pp. 1141-1151, 2009.
  • [6] L. Jia, J.-P. Xu, H. Wang and J. Ji, ''Polyamidoamine dendrimers surface-engineered with biomimetic phosphorylcholine as potential drug delivery carriers'', Colloids and Surfaces B-Biointerfaces, vol. 84, no. 1, pp. 49-54, 2011.
  • [7] P. Kesharwani, K. Jain and N.K. Jain, ''Dendrimer as nanocarrier for drug delivery'', Progress in Polymer Science, vol. 39, no. 2, pp. 268-307, 2014.
  • [8] C. Dufès, I.F. Uchegbu and A.G. Schätzlein, ''Dendrimers in gene delivery'', Advanced Drug Delivery Reviews, vol. 57, no. 15, pp. 2177-2202, 2005.
  • [9] G. Dang, Y. Shi, Z. Fu and W. Yang, ''Polymer nanoparticles with dendrimer-Ag shell and its application in catalysis'', Particuology, vol. 11, no. 3, pp. 346-352, 2013.
  • [10] M. Tulu, N.M. Aghatabay, M. Senel, C. Dizman, T. Parali and B. Dulger, ''Synthesis, characterization and antimicrobial activity of water soluble dendritic macromolecules'', European Journal of Medicinal Chemistry, vol. 44, no. 3, pp. 1093-1099, 2009.
  • [11] K. Öztürk, G. Esendağlı, M.U. Gürbüz, M. Tülü and S. Çalış, ''Effective targeting of gemcitabine to pancreatic cancer through PEG-cored Flt-1 antibody-conjugated dendrimers'', International Journal of Pharmaceutics, vol. 517, no. 1, pp. 157-167, 2017.
  • [12] A.S. Ertürk, M.U. Gürbüz and M. Tülü, ''The effect of PAMAM dendrimer concentration, generation size and surface functional group on the aqueous solubility of candesartan cilexetil'', Pharmaceutical development and technology, vol. 22, no. 1, pp. 111-121, 2017.
  • [13] M.U. Gürbüz, A.S. Ertürk and M. Tülü, ''Synthesis of surface-modified TREN-cored PAMAM dendrimers and their effects on the solubility of sulfamethoxazole (SMZ) as an analog antibiotic drug'', Pharmaceutical Development and Technology, vol., no., pp. 1-12, 2016.
  • [14] A.S. Ertürk, M.U. Gürbüz and M. Tülü, ''New-generation Jeffamine® D230 core amine, TRIS and carboxyl-terminated PAMAM dendrimers: Synthesis, characterization and the solubility application for a model NSAID drug Ibuprofen'', Marmara Pharmaceutical Journal, vol. 21, no. 2, pp. 385-399, 2017.
  • [15] O.M. Milhem, C. Myles, N.B. McKeown, D. Attwood and A. D’Emanuele, ''Polyamidoamine Starburst® dendrimers as solubility enhancers'', International Journal of Pharmaceutics, vol. 197, no. 1–2, pp. 239-241, 2000.
  • [16] A. Abderrezak, P. Bourassa, J.S. Mandeville, R. Sedaghat-Herati and H.A. Tajmir-Riahi, ''Dendrimers bind antioxidant polyphenols and cisplatin drug'', PloS one, vol. 7, no. 3, pp. e33102, 2012.
  • [17] C. Yiyun and X. Tongwen, ''Dendrimers as potential drug carriers. Part I. Solubilization of non-steroidal anti-inflammatory drugs in the presence of polyamidoamine dendrimers'', European Journal of Medicinal Chemistry, vol. 40, no. 11, pp. 1188-1192, 2005.
  • [18] B. Devarakonda, R.A. Hill, W. Liebenberg, M. Brits and M.M. de Villiers, ''Comparison of the aqueous solubilization of practically insoluble niclosamide by polyamidoamine (PAMAM) dendrimers and cyclodextrins'', International journal of pharmaceutics, vol. 304, no. 1, pp. 193-209, 2005.
  • [19] M. Ma, Y. Cheng, Z. Xu, P. Xu, H. Qu, Y. Fang, T. Xu and L. Wen, ''Evaluation of polyamidoamine (PAMAM) dendrimers as drug carriers of anti-bacterial drugs using sulfamethoxazole (SMZ) as a model drug'', European Journal of Medicinal Chemistry, vol. 42, no. 1, pp. 93-98, 2007.
  • [20] K. Öztürk, A.S. Ertürk, C. Sarısözen, M. Tulu and S. Çalış, ''Cytotoxicity and in vitro characterization studies of synthesized Jeffamine-cored PAMAM dendrimers'', Journal of microencapsulation, vol. 31, no. 2, pp. 127-136, 2014.
  • [21] R. Yin, Y. Zhu, D. Tomalia and H. Ibuki, ''Architectural copolymers: rod-shaped, cylindrical dendrimers'', Journal of the American Chemical Society, vol. 120, no. 11, pp. 2678-2679, 1998.
  • [22] A.S. Chauhan, N.K. Jain, P.V. Diwan and A.J. Khopade, ''Solubility enhancement of indomethacin with poly (amidoamine) dendrimers and targeting to inflammatory regions of arthritic rats'', Journal of drug targeting, vol. 12, no. 9-10, pp. 575-583, 2004.
  • [23] M.-C. Popescu, D. Filip, C. Vasile, C. Cruz, J. Rueff, M. Marcos, J. Serrano and G. Singurel, ''Characterization by Fourier transform infrared spectroscopy (FT-IR) and 2D IR correlation spectroscopy of PAMAM dendrimer'', The Journal of Physical Chemistry B, vol. 110, no. 29, pp. 14198-14211, 2006.