Sinnamaldehitin yeni schiff bazlarının sentezi ve antioksidan özelliklerinin incelenmesi

Bu çalışmada, sinnamaldehitin 9 yeni schiff bazı sentezlenmiş ve bu bileşiklerin 2,2-difenil-1-pikrilhidrazil radikal söndürücü kapasitesi (DPPH), Troloks eşdeğeri antioksidan kapasitesi (ABTS) ve bakır (II) iyonu indirgeyici antioksidan kapasitesi (CUPRAC) olmak üzere üç farklı yöntemle antioksidan aktivite özellikleri incelenmiştir. Bu bileşiklerin içinde (2,3-dihidroksibenziliden)amino)fenil)-5-fenilpenta-2,4-dien-1-on (4c) bileşiği her üç yönteme göre oldukça etkin bir şekilde antioksidan özellik göstermiştir. Ayrıca sentezlenen bileşiklerin yapı aktivite ilişkisi incelenerek bileşiklerin sahip oldukları grupların antioksidan aktiviteyi hangi yönde etkilediği ortaya konulmuştur.

Synthesis and antioxidant activities of new schiff bases of Cinnamaldehyde

In this study, 9 new schiff bases of cinnamaldehyde were synthesized and their antioxidant activities were examined by DPPH, ABTS and CUPRAC. Among the synthesized compounds, (2,3-dihydroxybenzylidene)amino)phenyl)-5-phenylpenta-2,4-dien-1-one (4c) showed high effective antioxidant activity for all three methods. In addition, the structure activity relationship of the synthesized compounds was examined, and it was revealed how the groups possessed by the compounds had an effect on antioxidant activity.

___

  • [1] M. Ikram, S. Rehman, A. Khan, R. J. Baker, T. S. Hofer, F. Subhan, M. Qayum, Faridoon, and C. Schulzke, “Synthesis, characterization, antioxidant and selective xanthine oxidase inhibitory studies of transition metal complexes of novel amino acid bearing Schiff base ligand (vol 428, pg 117, 2015),” Inorganica Chimica Acta, vol. 453, pp. 779-779, Nov 1, 2016.
  • [2] B. Bekdeser, M. Ozyurek, K. Guclu, F. U. Alkan, and R. Apak, “Development of a new catalase activity assay for biological samples using optical CUPRAC sensor,” Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, vol. 132, pp. 485-490, Nov 11, 2014.
  • [3] M. S. Alam, J. H. Choi, and D. U. Lee, “Synthesis of novel Schiff base analogues of 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one and their evaluation for antioxidant and anti-inflammatory activity,” Bioorganic & Medicinal Chemistry, vol. 20, no. 13, pp. 4103-4108, Jul 1, 2012.
  • [4] B. Halliwell, and J. M. C. Gutteridge, “Oxygen Free-Radicals and Iron in Relation to Biology and Medicine - Some Problems and Concepts,” Archives of Biochemistry and Biophysics, vol. 246, no. 2, pp. 501-514, May 1, 1986.
  • [5] O. I. Aruoma, M. Grootveld, and T. Bahorun, “Free radicals in biology and medicine: From inflammation to biotechnology,” Biofactors, vol. 27, no. 1-4, pp. 1-3, 2006.
  • [6] L. Y. Chuang, J. Y. Guh, L. K. Chao, Y. C. Lu, J. Y. Hwang, Y. L. Yang, T. H. Cheng, W. Y. Yang, Y. J. Chien, and J. S. Huang, “Anti-proliferative effects of cinnamaldehyde on human hepatoma cell lines,” Food Chemistry, vol. 133, no. 4, pp. 1603-1610, Aug 15, 2012.
  • [7] S. Shreaz, W. A. Wani, J. M. Behbehani, V. Raja, M. Irshad, M. Karched, I. Ali, W. A. Siddiqi, and L. T. Hun, “Cinnamaldehyde and its derivatives, a novel class of antifungal agents,” Fitoterapia, vol. 112, pp. 116-131, Jul, 2016.
  • [8] C. Lv, X. Yuan, H. W. Zeng, R. H. Liu, and W. D. Zhang, “Protective effect of cinnamaldehyde against glutamate-induced oxidative stress and apoptosis in PC12 cells,” European Journal of Pharmacology, vol. 815, pp. 487-494, Nov 15, 2017.
  • [9] H. Wang, H. J. Yuan, S. J. Li, Z. Li, and M. Y. Jiang, “Synthesis, antimicrobial activity of Schiff base compounds of cinnamaldehyde and amino acids,” Bioorganic & Medicinal Chemistry Letters, vol. 26, no. 3, pp. 809-813, Feb 1, 2016.
  • [10] H. M. El-Bassossy, A. Fahmy, and D. Badawy, “Cinnamaldehyde protects from the hypertension associated with diabetes,” Food and Chemical Toxicology, vol. 49, no. 11, pp. 3007-3012, Nov, 2011.
  • [11] R. Y. Zhu, H. X. Liu, C. Y. Liu, L. L. Wang, R. F. Ma, B. B. Chen, L. Li, J. Z. Niu, M. Fu, D. W. Zhang, and S. H. Gao, “Cinnamaldehyde in diabetes: A review of pharmacology, pharmacokinetics and safety,” Pharmacological Research, vol. 122, pp. 78-89, Aug, 2017.
  • [12] A. A. Hosni, A. A. Abdel-Moneim, E. S. Abdel-Reheim, S. M. Mohamed, and H. Helmy, “Cinnamaldehyde potentially attenuates gestational hyperglycemia in rats through modulation of PPAR gamma, proinflammatory cytokines and oxidative stress,” Biomedicine & Pharmacotherapy, vol. 88, pp. 52-60, Apr, 2017. [13] H. Zhao, M. Zhang, F. X. Zhou, W. Cao, L. L. Bi, Y. H. Xie, Q. Yang, and S. W. Wang, “Cinnamaldehyde ameliorates LPS-induced cardiac dysfunction via TLR4-NOX4 pathway: The regulation of autophagy and ROS production,” Journal of Molecular and Cellular Cardiology, vol. 101, pp. 11-24, Dec, 2016.
  • [14] N. Y. Kim, S. G. Ahn, and S. A. Kim, “Cinnamaldehyde protects human dental pulp cells against oxidative stress through the Nrf(2)/HO-1-dependent antioxidant response,” European Journal of Pharmacology, vol. 815, pp. 73-79, Nov 15, 2017.
  • [15] K. P. Rakesh, H. M. Manukumar, and D. C. Gowda, “Schiff's bases of quinazolinone derivatives: Synthesis and SAR studies of a novel series of potential anti-inflammatory and antioxidants,” Bioorganic & Medicinal Chemistry Letters, vol. 25, no. 5, pp. 1072-1077, Mar 1, 2015.
  • [16] Y. Zhang, Y. L. Fang, H. Liang, H. S. Wang, K. Hu, X. X. Liu, X. H. Yi, and Y. Peng, “Synthesis and antioxidant activities of 2-oxo-quinoline-3-carbaldehyde Schiff-base derivatives,” Bioorganic & Medicinal Chemistry Letters, vol. 23, no. 1, pp. 107-111, Jan 1, 2013.
  • [17] M. Galini, M. Salehi, M. Kubicki, A. Amiri, and A. Khaleghian, “Structural characterization and electrochemical studies of Co(II), Zn(II), Ni(II) and Cu(II) Schiff base complexes derived from 2-((E)-(2-methoxyphenylimino)methyl)-4-bromophenol; Evaluation of antioxidant and antibacterial properties,” Inorganica Chimica Acta, vol. 461, pp. 167-173, May 1, 2017.
  • [18] A. A. Shanty, J. E. Philip, E. J. Sneha, M. R. P. Kurup, S. Balachandran, and P. V. Mohanan, “Synthesis, characterization and biological studies of Schiff bases derived from heterocyclic moiety,” Bioorganic Chemistry, vol. 70, pp. 67-73, Feb, 2017.
  • [19] N. M. Parekh, B. M. Mistry, M. Pandurangan, S. K. Shinde, and R. V. Patel, “Investigation of anticancer potencies of newly generated Schiff base imidazolylphenylheterocyclic-2-ylmethylenethiazole-2-amines,” Chinese Chemical Letters, vol. 28, no. 3, pp. 602-606, Mar, 2017.
  • [20] D. J. Weldon, M. D. Saulsbury, J. Goh, L. Rowland, P. Campbell, L. Robinson, C. Miller, J. Christian, L. Amis, N. Taylor, C. Dill, W. Davis, S. L. Evans, and E. Brantley, “One-pot synthesis of cinnamylideneacetophenones and their in vitro cytotoxicity in breast cancer cells,” Bioorganic & Medicinal Chemistry Letters, vol. 24, no. 15, pp. 3381-3384, Aug 1, 2014.
  • [21] F. Sonmez, S. Sevmezler, A. Atahan, M. Ceylan, D. Demir, N. Gencer, O. Arslan, and M. Kucukislamoglu, “Evaluation of new chalcone derivatives as polyphenol oxidase inhibitors,” Bioorganic & Medicinal Chemistry Letters, vol. 21, no. 24, pp. 7479-7482, Dec 15, 2011.
  • [22] S. B. Kedare, and R. P. Singh, “Genesis and development of DPPH method of antioxidant assay,” Journal of Food Science and Technology-Mysore, vol. 48, no. 4, pp. 412-422, Aug, 2011.
  • [23] B. Z. Kurt, I. Gazioglu, F. Sonmez, and M. Kucukislamoglu, “Synthesis, antioxidant and anticholinesterase activities of novel coumarylthiazole derivatives,” Bioorganic Chemistry, vol. 59, pp. 80-90, Apr, 2015.
  • [24] R. Apak, K. Guclu, M. Ozyurek, and S. E. Celik, “Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay,” Microchimica Acta, vol. 160, no. 4, pp. 413-419, 2008.