Verification of nonlinear finite element modelling of I-shaped steel beams under combined loading

Ekonomik zorluklar ve laboratuvar imkanlarının kısıtlı olmasından dolayı gerçek deneyler yerine sonlu elemanlar yöntemi kullanılarak bilgisayar programında sayısal deneyler yapılabilir. Bu çalışmada aynı anda zayıf eksen altında eğilmeye ve eksenel basınç kuvvetine maruz kalmış I-kesitli çelik kirişlerin sonlu elemanlar yöntemi ile hesap yapan Abaqus 6.3 adlı bilgisayar programı ile modellenmesi yapılmıştır. Yapılan modelin doğruluğu gerçek laboratuvar deney sonuçlarıyla kıyaslanarak test edilmiştir. Bu makalede modelleme basamakları, kullanılan paket programın özellikleri ve sonlu elemanlar modelinin aşamaları ile yapılan kabuller detaylı olarak sunulmuştur.

Experimental testing is expensive and time consuming to perform large series of tests. The other choice is to use a numerical experimental series with the help of a computer by using nonlinear finite element software. Given the reliance of the present work on this analytical method, it is important to clearly state the modeling approached used, software packages employed, and any assumptions made during the construction of the finite element analogs for the I-shaped cross-sections under investigation. In addition, verification of the modeling techniques against full-scale experimental testing can be of great value. The commercial finite element software package ABAQUS 6.3 is employed in this research. All modeling reported herein considers both nonlinear geometric and material influences.

___

1.ABAQUS, (2001). "Users Manual," Version 6.3, Hibbitt, Karlsson & Sorenson, Inc., Pawtucket, Rhode Island, USA.

2.AISC, (1999). Load and Resistance Factor Design Specification for Structural Steel Buildings, 3rd Ed., American Institute of Steel Construction Inc., Chicago, Illinois.

3.Bathe, K.J., (1982). Finite Element Procedures in Engineering Analysis, Prentice Hall, Inc., New Jersey.

4.Chacrabarty, J., (1987). Theory of Plasticity, McGraw-Hill Book Company.

5.Cook, R.D., Malkus, D.S. Plesha, M.E., (1989). Concepts and Application of Finite Element Analysis, 3rd edition, John Wiley & Sons, Inc., USA.

6.Galambos, T. V., (1998) Guide to Stability Design Criteria for Metal Structures, Fifth Edition, John Wiley & Sons, Inc., New York, New York.

7.Galambos, T. V., Ravindra, M. K. (1978). "Properties of Steel for Use in LRFD," Journal of the Structural Division, Vol. 104 , No. ST9, pp.1459-1468.

8.Greco, N., Earls, C.J., (2003). "Structural Ductility in Hybrid High Performance Steel Beams," Journal of Structural Engineering, Vol. 129, No. 12, American Society of Civil Engineers, Reston, Virginia, pp. 1584-1595.

9.Ramm, E. Stegmuller, H., (1982). "Buckling of Shells", Proceeding of a State of the Art Colloqium.

10.Rasmussen, K.J.R. and Chick, C.G. (1995). "Tests of thin walled I-section in combined compression and minor axis bending- Part II-Proportional Loading Tests," The University of Sydney - School of Civil and Mining Engineering Research Report No.R717.

11.Thomas, S., Earls, C.J., (2003a) "Cross-sectional Compactness and Bracing Requirements for HPS483 W Girders," Journal of Structural Engineering, Vol. 129, No. 12 American Society of Civil Engineers, Reston, Virginia, pp. 1569-1583.