Sol-jel yöntemi ile zirkonyum fosfat ve poli (etilen oksit) temelli polimer kompozit malzeme (ZRP/PEO) sentezi ve karakterizasyonu

Bu çalışmada, sol-jel yöntemi ile tetraetil ortosilikat (TEOS) ön başlatıcısı varlığında zirkonyum fosfat (ZrP) ve Poli (etilen oksit) temelli ZrP/ PEO kompozit malzemesi üretilmiştir. Hazırlanan malzemenin yapısı X-ışını difraksiyonu (XRD) ve Fourier transform IR spektroskopisi (FTIR) yöntemleri ile incelenmiştir. Isısal özellikleri ise termal gravimetrik analiz (TGA) ile incelenmiştir. TGA analizinde, sentezlenen malzemenin 300 °C’e kadar kararlı olduğu bulunmuştur. Üretilen bu malzemenin maliyeti düşüktür, ayrıca ısıtıldığında 100 °C’nin üzerindeki sıcaklıklarda 300 °C ye kadar bozulmaya uğramamaktadır. 300 °C’ye kadar olan ısısal kararlılığı ve su tutma kabiliyeti sayesinde ZrP/PEO kompozit malzemesi, ara sıcaklık yakıt pillerinde kullanılabilme potansiyeline sahiptir.

Synthesis and characterization of zirconium phosphate and poly(ethylene oxide) based polymer composite

In this study, by using tetraethyl orthosilicate (TEOS) as precursor, a composite material based on the zirkonium phosphate and poly (ethylene oksit) (PEO) polymer (ZrP / PEO) has been prepared through the sol-gel method. The characterisation of the obtained material has been carried out by using flourer transform–infrared spectroscopy (FTIR) and X-ray diffraction (XRD) methods. Thermal properties have been investigated with thermal gravimetric analyzing (TGA). It has been founded that ZrP/PEO polymer composite material is stable even up to 300 °C. Thanks to the thermal stability and water uptake ability, ZrP/PEO polymer composite is the promising candidate to be used as a medium temperature fuel-cell electrolyte material.

___

  • M. Rikukawa, K. Sanui, Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers, Prog. Polym. Sci. vol.25 pp.1463-502, 2000.
  • JD. Lichtenhan, Y.A. Otonari, MJ. Gan, Linear hybrid polymer building blocks: methacrylate-functionalized polyhedral oligomeric silsesquioxane monomers and polymers, Macromolecules, vol.28 pp.8435- 8437, 1995
  • E. S. Cozza, Q. Ma, O. Monticelli and P. Cebe, ‘Nanostructured nanofibers based on PBT and POSS: Effect of POSS on the alignment and macromolecular orientation of the nanofibers’, European Polymer Journal, vol. no. 49, pp. 33–40, 2013.
  • R. He, Q. Li, G. Xiao and N.J. Bjerrum, ‘Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors’. Journal of Mebrane Science, vol. 226 pp.169-184, 2003.
  • B. Bonnet, D.J. Jones, L. Tchicaya, G. Alberti, M. Casciola, L. Massinelli, B. Bauer, A. Peraio and E. Ramunni, ‘Hybrid organicinorganic membranes for a medium temperature fuel cell’. Journal of New materials for Electrochemical Systems, vol.3, pp.87-92, 2000.
  • Q. Li, R. He, J.Q. Jensen and N.J. Bjerrum, ‘Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 ◦C’. Chem Mater, vol.15 no.26, pp.4896–4915, 2003.
  • M. Linlin, ‘Poly(2,5-benzimidazole)-silica nanocomposite membranes for high temperature proton exchange membrane fuel cell’, Journal of Membrane Science, vol.411-412, pp.91-98, 2012.
  • W. Shuang, Z. Chengji, M. Wenjia, Z. Gang, L. Zhongguo, N. Jing, L. Mingyu, ‘Preparation and properties of epoxy-crosslinked porous polybenzimidazole for high temperature proton exchange membrane fuel cells’, Journal of Membrane Science 411- 412, 54-63, 2012
  • X. Meng and Z. Xian, ’Structure and thermal behavior of EPDM/POSS Composite Fiber Prepared by Electrospinning’, Journal of applied polymer science, DOI; 10.1002/app.38349.
  • J. R. Stevens and B.E. Mellander, ‘Poly(ethylene oxide)-alkali metal-silver halide salt systems with high ionic conductivity at room temperature‘ Solid State Ionics, vol.21, pp.203-206, 1986.
  • I. Honma, Y. Takeda, J.M. Bae, ‘Protonic conducting properties of sol-gel derived organic/inorganic nanocomposite membranes doped with acidic functional molecules’, Solid State Ionics, vol.120, pp.255–264, 1999.
  • J. Xi and X. Tang, Nanocomposite polymer electrolyte based on Poly(ethylene oxide) and solid super acid for lithium polymer battery, Chemical Physics Letters, vol. 393, pp.271–276, 2004.
  • A. Clearfield, 'Inorganic ion exchangers with layered structures', Annual Reviews Material Science, vol.14, pp.205, 1984
  • S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, ‘Review of the proton exchange membranes for fuel cell applications’, International Journal of Hydrogen Energy, vol.35, pp.9349-9384, 2010.
Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1301-4048
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1997
  • Yayıncı: Sakarya Üniversitesi Fen Bilimleri Enstitüsü