Betonarme kirişlerin deneysel ve teorik burulma momenti değerlerinin karşılaştırılması

Betonarme kiriş elemanlarda etriye oranı, beton sınıfı ve beton tipinin burulma davranışının üzerinde etkisinin deneysel olarak incelenmesi be çalışmanın temelini oluşturmaktadır. Deneylerde beton basınç dayanımı 20 MPa ile 40 MPa, beton tipi geleneksel beton ile kendiliğinden yerleşen beton ve etriye aralığı 80 mm ve 100 mm çalışmanın ana parametreleri olarak belirlendi. 12 adet normal betonlu 8 adet kendiliğinden yerleşen betonlu 250x300x1500 mm boyutlarında kiriş numunesi hazırlandı. Burulma momentine maruz bırakılan kiriş numunelerinin burulma momenti kapasiteleri, bu değere karşılık gelen döneme açısı, kritik burulma momenti değerleri, bu değerlere karşılık gelen kritik dönme açıları, burulma çatlakları deneysel olarak ölçüldü. Elde edilen deneysel burulma momenti kapasitesi sonuçları elastik, plastik ve yanal eğilme teorileri ile karşılaştırıldı. Deneysel sonuçlara en yakın değerler yanal eğilme teorisinde elde edildi. Kiriş numunelerinin burulma momenti kapasitesi-dönme açısı grafikleri çizildi. Düşük etriye aralığının, yüksek dayanımlı betonun ve beton tipi olarak kendiliğinden yerleşen betonun burulma davranışı üzerinde olumlu bir etkiye sahip olduğu deneysel olarak bu çalışma kapsamında belirlendi. Deneysel kritik burulma momenti değerleri ilgili çalışmalardan elde edilen ampirik değerlerin karşılaştırılması yapıldı.

The comparison of the experimental and theoretical torsional moment results of reinforcement concrete beams

The experimental investigation effect on the torsional behavior of web spacing, concrete class and concrete type of reinforcement concrete beams constitute basis of this work. The compressive strength of concrete, 20 MPa and 40 MPa, the type of concrete, conventional concrete and self-compacting concrete, web spacing of 80 mm and 100 mm, was determined the main parameters of this work. 12 unit of conventional concrete beams and 8 unit of self-compacting concrete beams of 250x300x1500 mm was manufactured. The torsional moment capacities and corresponding rotation angle values, the critical torsional moment values and corresponding critical rotation angles, torsional cracks of the beam samples that subjected to the torsion was measured experimentally. The torsional moment capacity results that were measured experimentally were compared with the elastic, plastic and skew-bending theories. The most closed results were get to the skew-bending theory. The graphic of torsional moment capacity- unit rotational angles were plotted. The low web spacing, high concrete class and self-compacting concrete type that have a positive effect on the torsional behavior was determined experimentally in this study. Experimental critical torsion values were compared with empirical values obtained from related studies.

___

  • Doğangün, A., Betonarme Yapıların Hesap ve Tasarımı 2008, İstanbul Birsen Yayınevi
  • Csikós, Á. and I. Hegedûs, Torsion of reinforced concrete beams. Technical University of Budapest, Department of Reinforced Concrete Structures H-1521 Budapest, 1998.
  • Zhang, Y., Torsion in high strength concrete rectangular beams2002.
  • TS500, TS500 Requirements for design and construction of reinforced concrete structures, 2000, Turkish Standards Institute Ankara,, Turkey.
  • Hsu, T.T., Torsion of Structural ConcretePlain Cocnrete Rectangular Sections. Special Publication, 1968. 18: p. 203-238.
  • Kuyt, B., Ultımate Torsıonal Resıstance Of Rectangular Reınforced Concrete Beams. Concrete, 1968. 2(12): p. 522-&.
  • Lampert, P. and B. Thürlimann, Torsionsversuche an Stahlbetonbalken. 1968.
  • Valipour, H.R. and S.J. Foster, Nonlinear reinforced concrete frame element with torsion. Engineering Structures, 2010. 32(4): p. 988-1002. Pineaud, A., et al., Mechanical properties of high performance self-compacting concretes at room and high temperature. Construction and Building Materials, 2016. 112: p. 747- 755.
  • Gesoğlu, M., et al., Fresh and hardened characteristics of self compacting concretes made with combined use of marble powder, limestone filler, and fly ash. Construction and Building Materials, 2012. 37: p. 160- 170.
  • Naik, M.P.P. and M. Vyawahare. Strength And Durability Investigations On Self Consolidated Concrete With Pozzolanic Filler And Inert Filler. in International Journal of Engineering Research and Technology. 2013. ESRSA Publications.
  • Aydin, A.C., et al., Effects of the different atmospheric steam curing processes on the properties of self-compacting-concrete containing microsilica. Sadhana, 2015. 40(4): p. 1361-1371.
  • Sadek, D.M., M.M. El-Attar, and H.A. Ali, Reusing of marble and granite powders in self-compacting concrete for sustainable development. Journal of Cleaner Production, 2016. 121: p. 19-32.
  • Golafshani, E.M. and A. Ashour, Prediction of self-compacting concrete elastic modulus using two symbolic regression techniques. Automation in Construction, 2016. 64: p. 7- 19.
  • Okrajnov-Bajić, R. and D. Vasović, Selfcompacting concrete and its application in contemporary architectural practice. Spatium, 2009(20): p. 28-34.
  • Poppe, A.-M. and G. De Schutter. Creep and shrinkage of self-compacting concrete. in First International Symposium on Design, Performance and Use of Self-Consolidating Concrete, China. 2005.
  • EFNARC, S., Guidelines for selfcompacting concrete. EFNARC Publication, London, UK, 2002: p. 1-32.
Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1301-4048
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1997
  • Yayıncı: Sakarya Üniversitesi Fen Bilimleri Enstitüsü