$ThO_2$ yakıtlı bir füzyon-fisyon hibrid reaktöründe farklı reflektör malzemelerinin nötronik performansa etkisi

Reflektör malzemeler, manto performansını artırmak ve manto yapısındaki dezavantajları ortadan kaldırmak amacıyla füzyon-fisyon reaktör yapısında incelenmiştir. Bu çalışmada, ThO2 yakıtlı bir füzyon-fisyon hibrid reaktöründe çeşitli reflektör malzemeler, sırasıyla, Carbon (C) Zirkonyum hidrür (ZrH2), Titanyum karbür (TiC) ve Zirkonyum karbür (ZrC) kullanılarak reaktörün nötronik performansını düzgünleştirmek amacıyla araştırılmıştır. Nötron yükü 5 MW/m2 alınmış ve ilk duvar yapı malzemesi olarak SS-304 kullanılmıştır. Ayrıca, blanketteki ısıyı transfer etmek amacıyla yakıt bölgesinde $Li_{17}Pb_{83}$ ötektik lityum soğutucu seçilmiştir. Füzyon nötron kaynağı olarak 14.1 MeV ortalama enerjili D-T nötron kaynağı kullanılmıştır. Nötron transport hesaplamaları, tek boyutlu SCALE 5 bilgisayar sistem kodu yardımıyla yapılmıştır. Araştırılan reflektör malzemeler arasında, trityum üretim performansı açısından grafit karbon ve ZrH2 diğer reflektör malzemelerine göre en iyi performansı gösterirken, ZrC en kötü performansı göstermiştir. ZrH2, blanketteki en az nötron kaçağından dolayı ZrH2 en iyi nötron zırhlama malzemesi olarak belirlenmiştir. Öte yandan ZrC en iyi fisil yakıt üretimini gösterirken, ZrH2 en kötü performansı vermiştir. Sonuç olarak, bu aday reflektör malzemeleri hibrid reaktörlerde nötronik performansı düzgünleştirmek amacıyla kullanılabilecektir.

Impact of various reflector materials on the neutronic performance of a fusion-fission hybrid reactor with $ThO_2$ fuel

Reflector materials were performed in the fusion-fission reactor design to enhance the blanket performance and to eliminate the main disadvantage of this blanket concept. In this study, to improve the neutronic performance of the fusion-fission hybrid reactor with ThO2, various reflector materials, namely, graphite (C), Zirconium Hydride (ZrH2), Titanium Carbide (TiC) and Zirconium Carbide (ZrC) were investigated. The neutron wall load was taken at 5 MW/m2 and SS-304 alloy was used in the first wall. And also $Li_{17}Pb_{83}$ eutectic lithium was utilized for coolant in the fuel zone to supply heat transfer out of the blanket. 14.1 MeV D-T neutron source were used as a fusion neutron source. Neutron transport calculations were done with the aid of one dimensional computer system code of SCALE 5. Among the investigated reflector materials, graphite and ZrH2 showed better tritium breeding ratio (TBR) than others whereas ZrC had the worst performance. ZrH2 was determided the best neutron shielding because of minimal neutron leakage from the blanket. On the other hand, while ZrC showed better fissile fuel breeding, ZrH2 had the worst performance. As a result, these candidate reflector materials could be used in hybrid reactors to improve the neutronic performances.

___

  • 1. Berwald D H et al., 1982 Fission Suppressed Hybrid Reactor Fusion Breeder, Lawrence Livermore National Laboratory, UCID-19327.
  • 2. Greenspan E 1984 Fusion-Fission Hybrid Reactors, Advances in Science and Technology, J. LEWINS and M. BECKER, Eds., Plenum Press, 16, 289.
  • 3. Lee J D et al, 1982 Feasibility Study of a Fission- Suppressed Tandem-Mirror Hybrid Reactor Fusion Breeder, Lawrence Livermore National Laboratory, CA, UCID-19327.
  • 4. Smith D L, Morgan G D et al, 1985 Blanket comparison and selection study. Fusion Technology 8: 10.
  • 5. Şahin, S., Al-Kusayer, T., 1986, “244Cm as Multiplier and Breeder in a ThO2 Hybrid Blanket Driven by a (Deuterium-Tritium) Source”, Fusion Technology, 10, p. 1297.
  • 6. Şahin S., Al-Kusayer T., Raoof M. A., 1986, “Preliminary Design Studies of A Cylindrical Experimental Hybrid Blanket With Deuterium-Tritium Driver”, Fusion Technology, 10, p. 84.
  • 7. Şahin S., Yapıcı H., 1988, “Rejuvenation of Light Water Reactor Spent Fuel in Fusion Blankets”, Annals of Nuclear Energy, 25, p. 1317.
  • 8. Şahin S., Yapıcı H., 1999, “Neutronic Analysis of a Thorium Fusion Breeder with Enhanced Protection Againts Nuclear Weapon Proliferation”, Annals of Nuclear Energy, 26, p.13.
  • 9. Şahin S, Yapıcı H., Şahin N., 2000, “Neutronic Performance of Proliferation Hardened Thorium Fusion Breeders”, Fusion Engineering and Design, 54, no. 1, p.63.
  • 10. Yapıcı H., Şahin N., Bayrak M., 2000, “Investigation of Neutronic Potential of a Moderated (D–T) Fusion Driven Hybrid Reactor Fueled with Thorium to Breed Fissile Fuel for LWRs”, Energy Conversion and Management, 41, p. 435.
  • 11. Şahin S., Şahin H. M., Sözen A., Bayrak M., 2002, “Power Flattenig and Minor Actinide Burning in a Thorium Fusion Breeder,” Energy Conversion and Manegement, 43, p. 799.
  • 12. M. Übeyli, A. Acır, 2007, Utilization of thorium in a high power density hybrid reactor with innovative coolants, Energy Conversion and Management 48 (2): 576-582.
  • 13. Şahin S., Yalçın Ş., Yıldız K., 2003, “Fissile Fuel Breeding with Peaceful Nuclear Explosives”, Fusion Engineering and Design, vol. 65, p. 643.
  • 14. Şahin S., Şahin H. M., Yıldız K., Acır A., 2005, “Effects of spectral shifting in an inertial confinement fusion system”, Kerntechnik, vol. 70/4.
  • 15. Şahin S., Moir R. W., Ünalan S., 1994, “Neutronic Investigation of a Power Plant Using Peaceful Nuclear Explosives”, Fusion Technology, 26, p. 1311.
  • 16. Yapıcı H., Übeyli M., Yalçın Ş., 2002, “Neutronic Analysis of Prometheus Reactor Fueled with Various Compounds of Thorium and Uranium”, Annals of Nuclear Energy, 29:1871 – 1889.
  • 17. Ünalan S., Ayata T., Akansu S.O., Erişen A., Bölükbaşı A., “Light and Heavy Water Cooled Hybrid Reactors for Rejuvenation of LWR Spent Fuels”, Energy Conversion and Management, 44, p. 2567, 2003.
  • 18. Acır A., “PACER Füzyon Reaktöründe Yakıt ve Enerji Üretiminin İncelenmesi, PhD Thesis, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, Türkiye.
  • 19. M. Übeyli and E. Tel, 2003, Effect of different structural materials on neutronic performance of a hybrid reactor, Journal of Fusion Energy 22 (4) 173-179.
  • 20. M. Übeyli, 2004, Neutronic performance of new coolants in a fusion-fision (hybrid) reactor, Fusion Engineering and Design 70(4) 319-328.
  • 21. Ş.Yalçın, M. Übeyli, A. Acır, 2005, Neutronic analysis of a high power density hybrid reactor using innovative coolants, Sadhana, 30(4), 585-600.
  • 22. M. Übeyli, 2003, On the tritium breeding capability of flibe, flinabe and Li20Sn80 in a fusion-fission (hybrid) reactor, Journal of Fusion Energy 22 (1) 51-57.
  • 23. Yıldız K., Acır A., 2005, “Doğal Li soğutuculu-ThSi2 Yakıtlı Bir Füzyon-Fisyon Hibrid Reaktöründe Farklı Trityum Üretim Malzemelerinin Etkinliğinin İncelenmesi”, Journal of the Faculty of the Engineering and Architecture of the Gazi University, vol. 20, no 4, pp.463-471.
  • 24. M. Übeyli, 2006, Impact of solid breeder materials on tritium breeding in a hybrid reactor, Journal of Fusion Energy, 25 (1-2): 99-106.
  • 25. Yıldız K., 2005, “An investigation of the Effects of Neutron Energy-Group Structures and Resonance Treatment in a Fusion-Fission Hybrid Reactor Fuelling with ThO2”, Annals of Nuclear Energy, vol.32/1, pp. 101-118.
  • 26. Şahin S., Şahin H. M., Yıldız K., 2002, Investigation of The Effects of The Resonance Absorption in a Fusion Breeder Blanket”, Annals of Nuclear Energy, vol. 29, p. 1641.
  • 27. M.Z. Youssef M.A. Abdou, 2000, “Heat deposition, damage, and tritium breeding characteristics in thick liquid wall blanket concepts”, Fusion Engineering and Design 49–50, 719–725
  • 28. Yapıcı H, Bayrak M, 2005, Neutronic Analysis Of Denaturing Plutonium in a Thorium Fusion Breeder and Power Flattening, Energy Conversıon And Management 46 (7-8): 1209-1228.
  • 29. Yapıcı H, Ipek O, Ozceyhan V, Erişen A., 2000 “Analysis of the rejuvenation performance of hybrid blankets by using uranium fuels (UN, UC, UO2, U3Si2) and different coolants for various volume fraction”, Annals Of Nuclear Energy 27 (4): 279-294.
  • 30. Ünak, T. 2000. What is the Potential Use of Thorium in the Future Energy Production Technology?, Progress in Nuclear Energy, 37, p. 137.
  • 31. Gohar Y., Smith D.L., 2000, Multiplier, moderator, and reflector materials for advanced Lithium-vanadium fusion blankets, Journal of Nuclear Materials 283-287, 1370-1374.
  • 33. Kim Y., Hong B.G., Kim C.H., 2005, “A neutronic investigation of He-cooled liquid Li-breeder blankets for fusion power reactor” Fusion Engineering and Design 75–79, 1067–1070.
  • 34. Petrie L. M., 2000, “SCALE System Driver”, NUREG/CR-0200, Revision 6, vol. 3, Section M1, ORNL/NUREG/CSD-2/R6, Oak Ridge National Laboratory.
  • 35. Jordan, W. C., Bowman, S. M., 2000, “Scale Cross- Section Libraries”, NUREG/CR-0200, Revision 6, vol. 3, section M4, ORNL/NUREG/CSD-2/V3/R6, Oak Ridge National Laboratory.
  • 36. Landers N. F., Petrie L. M., 2000, “CSAS, Control Module For Enhanced Criticality Safety Analysis Sequences”, NUREG/CR-0200, Revision 6, vol. 1, Section C4, ORNL/NUREG/CSD-2/V1/R6, Oak Ridge National Laboratory.
  • 37. Bondarenko I. I. (Ed.), 1964, “Group Constants For Nuclear Reactor Calculations”, Consultants Bureau, New York.
  • 38. Greene N. M., 2000, “BONAMI, Resonance Self- Shielding by the Bondarenko Method”, NUREG/CR- 0200, Revision 6, vol. 2, section F1, ORNL/NUREG/CSD-2/V2/R6, Oak Ridge National Laboratory.
  • 39. Greene N. M., Petrie L. M., Westfall R. M., 2000, “NITAWL-II, Scale System Module For Performing Resonance Shielding and Working Library Production”, NUREG/CR-0200, Revision 6, vol. 2, Section F2, ORNL/NUREG/CSD-2/V2/R6, Oak Ridge National Laboratory.
  • 40. Greene N. M., Petrie L. M., 2000, “XSDRNPM, A One- Dimensional Discrete-Ordinates Code For Transport Analysis”, NUREG/CR-0200, Revision 6, vol. 2, Section F3, ORNL/NUREG/CSD-2/V2/R6, Oak Ridge National Laboratory.
  • 41. Şahin S. 1991, “Radiation Shielding Calculations For Fast Reactors (in Turkish)”, Gazi University, Publication # 169, Faculty of Science and Literature, Publication number 22, Ankara, Turkey.
  • 42. Şahin S., Yapıcı H., Ünalan S., 1991, “ERDEMLI, A Computer Program to Process ANISN Output Data”, Gazi University, Ankara, Turkey.
  • 43. Youssef, MZ, Sawan, ME, Sze D K., 2002, The Breeding Potential of ‘Flinabe’ and Comparison to ‘Flibe’ in ‘CLiFF’ High Power Density Concept., Fusion Eng. Design 61–62: 497–503.
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ