Süt Endüstrisi Atıksuyunun Biyometanizayon Potansiyelinin İncelenmesi

Enerji kaynakları günümüzde yaygın olarak fosil yakıtlar üzerine çalışan sistemlerden oluşurken özellikle artan nüfus, fosil yakıtların tükenme riskinin olması, çevreye vermiş oldukları zarar nedeniyle yerini alternatif ve yenilenebilir enerji kaynaklarına bırakmaya başlamıştır. Türkiye’de yenilenebilir enerji kaynaklar arasında önemli bir potansiyele sahip olan biyogaz, organik bazlı atıkların, oksijensiz ortamda anaerobik fermantasyon sistemi uygulanarak parçalanması sonucu ortaya çıkan ve bileşiminde yanıcı metan gaz bulunan bir karışımdır. Yapılan bu çalışmada süt endüstrisi atıksuyunun biyometanizasyon potansiyeli ölçülmüş ve 35 günde 410 ml biyogaz üretilmiş olup deneysel sonuçlar eğri oluşturularak sayısallaştırılmıştır. Farklı derecelerde çeşitli polinom denklemleri veri setine uygulanmıştır. Beşinci derece polinom denklemi en iyi uyumu vermis olup denklemi y = 0.98 x olarak elde edilmiştir. Doğru uyumun istatistiksel iyiliği SSE, RMSE ve belirleme katsayısına göre değerlendirilmiş olup SSE, RMSE ve belirleme katsayısı sırasıyla 3130, 9.89 ve 0.99 olarak tespit edilmiştir.

Investigation of Biomethane Potential of Dairy Industry Wastewater

While energy sources are now commonly found in systems that work on fossil fuels, they have begun to relocate to alternative and renewable sources of energy, especially due to the growing population, the risk of exhaustion of fossil fuels, and the damage they have caused to the environment. Biogas, which has an important potential among renewable energy sources in Turkey, is a mixture of organic-based wastes, resulting from the disintegration of an anaerobic fermentation system in an anaerobic environment, with combustible methane gas. In this study, the biomass potential of the wastewater of the dairy industry was measured and 410 ml biogas were produced in 35 days and the experimental results of the biogas production were digitized by creating a curve. Various polynomial equations are applied to the data set at different grades. The fifth order polynomial equation is the best fit. The equation was obtained as y = 0.98 x. The SSE, RMSE and the discriminant coefficient were determined as 3130, 9.89 and 0.99, respectively.

___

  • [1] Andrade, L.H., Motta, G., Amaral, M., "Treatment of dairy wastewater with a membrane bioreactor", Brazilian Jounal of Chemical Engineering, 30(4): 759-770, (2013).
  • [2] Porwal, J., Manea, A.V., Velhal, S.G., "Biodegradation of dairy effluent by using microbial isolates obtained from activated sludge", Water Research, 9: 1–15, (2015).
  • [3] Manh, L.D., "Bioremediation of vegetable oil and grease from polluted wastewater in dairy factory", Journal of. Science National Science Technology, 24: 56–62, (2008).
  • [4] Garcha, S., Kaur, N., Brar, S.K., "Aerobic granulation strategy for the treatment of dairy waste water", Indian Journal of Dairy Science, 67: 1–5, (2014).
  • [5] Vishakha, S.S., Kulkarni, S.W., Minal, W., "Physicochemical characterization of dairy effluents", International Journal Life Science and Pharma Research, 2: 2250–3137, (2013).
  • [6] Schwarzenbeck, N., Borges, J.M., Wilderer, P.A., "Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor", Applied Microbiology Biotechnology, 66 (6): 711–718, (2005).
  • [7] Kushwaha, J.P., Srivastava, V.C., Mall, I.D., "Organics removal from dairy wastewater by electrochemical treatment and residue disposal", Seperation and Purification Technology, 76: 198–205, (2010).
  • [8] Sarkar, B., Chakrabarti,P.P., Vijaykumar, A., Kale, V., "Wastewater treatment in dairy industries-possibility of reuse", Desalination, 195: 141–152, (2006).
  • [9] Hamdani, A., Mountadar, M., Assohei, O.,"Comparative study of the efficacy of three coagulants in treating dairy factory waste water", International Jounal of Dairy Technology, 8: 58–83, (2005).
  • [10] Adhikari, U., Harrigan, T., Reinhold, D.M., "Use of duckweed-based constructed wetlands for nutrient recovery and pollutant reduction from dairy wastewater", Ecological Engineering, 78: 6–14, (2015).
  • [11] Gavala, H.N., Kopsinis, H., Skiadas, I.V., Stamatelatou, K., Lyberatos, G., "Treatment of dairy wastewater using an upflow anaerobic sludge blanket reactor". Journal Of Agrcultural Engineering Research, 73: 59-63, (1999).
  • [12] Neto, S.A., Magri, T.C., Silva, G.M., Andrade, A.R., "Treatment of waste dye by electroflocculation: an experiment for undergraduate in chemistry". Quimica Nova, 34: 1468-1471.(2011).
  • [13] Garcha, S., Kaur, N., Brar, S.K., "Aerobic granulation strategy for the treatment of dairy waste water", Indian Journal of Dairy Science, 67: 1–5, (2014).
  • [14] Manh, L.D., "Bioremediation of vegetable oil and grease from polluted wastewater in dairy factory", Journal of Science Education Technology, 24: 56–62, (2014).
  • [15] Janczukowicz, W., Zielinski, M., Debowski, M., "Biodegradability evaluation of dairy effluents originated in selected sections of dairy production", Bioresource Technology, 99: 4199–4205, (2007).
  • [16] Garcha, S., Verma, N., Brar, S.K., "Comparative study on pollution potential of dairy wastewater generated by organized and unorganized sector", Asian Journal of Microbiology Biotechnology Environment Science, 16: 1051–1056, (2014).
  • [17] Koch, K., Drewes, J.E., "Alternative approach to estimate the hydrolysis rate constant of particulate material from batch data", Applied Energy, 120: 11-15, (2014).
  • [18] Çakir, F., Stenstrom, M., "Greenhouse gas production: A comparison between aerobicand anaerobic wastewater treatment technology", Department of Environmental Engineering Sciences, University of Florida,Gainesville, 39: 4197-4203, (2005).
  • [19] Henriksen, M., Bjerketvedt, D., Vaagsaether, K., Gaathaug, A. V., Skjold, T., Middha, P., "Accidental hydrogen release in a gas chromatograph laboratory: A case study". International Journal of Hydrogen Energy, 42(11): 7651-7656, (2017).
  • [20] Østgaard, K., Kowarz, V., Shuai, W., Henry, I. A., Sposob, M., Haugen, H. H., Bakke, R., Syringe test screening of microbial gas production activity: Cases denitrification and biogas formation. Journal of Microbiological Methods, 132: 119-124, (2017).
  • [21] Martin, A., Borja, R., Garcia, I., & Fiestas, J. A., "Kinetics of methane production from olive mill wastewater", Process Biochemistry, 26(2): 101-107, (1991).
  • [22] Riaño, B., Molinuevo, B., García-González, M. C., "Potential for methane production from anaerobic co-digestion of swine manure with winery wastewater", Bioresource Technology, 102(5): 4131-4136, (2011).