Sol-Jel Yöntemiyle Üretilen Alümina Alkojelin Fizikokimyasal ve Yapısal Özellikleri Üzerine Kurutma Türünün Etkisi

Üstün termal ve mekanik özellikleri sebebiyle başta uzay teknolojisi olmak üzere pek çok alanda kullanılmakta olan alkojeller, düşük yoğunluğa ve yüksek gözenekliliğe sahip süper yalıtkan ve çevre dostu malzemeler olarak bilinmektedir.  Genel olarak inorganik tuzlar ya da metal alkoksitlerin hidrolizi ve kondenzasyonu olarak bilinen sol-jel tekniği kullanılarak, üç aşamada üretilmektedirler. Son aşama hazırlanan ıslak jellerin kurutulması olup,  ıslak jelin gözenekliliği ve jel ağının korunması için en uygun kurutma tekniğinin seçilmesi büyük önem arz etmektedir. Bu çalışmada, sol-jel yöntemiyle sentezlenen alümina alkojellerden süperkritik şartlarda, atmosfer basıncında ve dondurarak olmak üzere üç farklı kurutma koşullarında elde edilen gözenekli malzemelerin fizikokimyasal ve yapısal özellikleri XRD, TGA/DSC, FT-IR ve BET analizleri ile karakterize edilmiştir. Farklı kurutma koşullarında aerojel, kriyojel ve ambijel ismini alan amorf yapıya sahip bu jellerin fizikokimyasal özellikleri ve ısısal davranışlarındaki değişimler dikkate alındığında, ıslak jellerin kurutulmasında en uygun kurutma tekniğinin ön işlem yapılmadan dondurarak kurutma olduğu sonucuna ulaşılmıştır. 

Effect of Drying Method on the Physicochemical and Structural Properties of Alumina Alcogel Produced by Sol-Gel Method

Because of its superior thermal and mechanical properties, alcogels, which are mainly used in space technology, are known as super insulation and environment friendly materials with low density and high porosity. Generally, they are produced in three stages using sol-gel technique known as hydrolysis and condensation of inorganic salts or metal alkoxides. The final stage is the drying of the wet gel, and it is of great importance to select the most suitable drying technique to protect the porosity and structure of wet gel. In this study, the physicochemical and structural properties of porous materials obtained by using sol-gel technique under three different drying conditions which are supercritical conditions, atmospheric pressure and freezing, were characterized by XRD, TGA/DSC, FT-IR and BET analyzes. Taking into account the physicochemical properties and thermal behavior of these gels, which have amorphous structure and named aerogel, cryogel and ambigel in different drying conditions, it is concluded that the best drying technique for drying wet gels is freeze drying without pretreatment.

___

  • [1] Fricke J., Tillotson T.M., “Aerogels: Production, characterization, and applications”, Thin Solid Films, 297: 212-223, (1997).
  • [2] García-González C.A., Camino-Rey M.C., Alnaief M., Zetzl C., Smirnova I., “Supercritical drying of aerogels using CO2: Effect of extraction time on the end material textural properties”, Journal of Supercritical Fluids, 66: 297-306, (2012).
  • [3] Du A., Zhou B., Zhang Z., Shen J., “A special material or a new state of matter: A review and reconsideration of the aerogel”, Materials, 6: 941-968, (2013).
  • [4] Goksu E.I., Hoopes M.I., Nellis B.A., Xing C., Faller R., Frank C.W., Risbud S.H., Satcher J.H., Longo M.L., “Silica xerogel/aerogel-supported lipid bilayers: Consequences of surface corrugation”, Biochimica et Biophysica Acta - Biomembranes, 1798: 719-729, (2010).
  • [5] Sachithanadam M., Joshi S.C., “Aerogel Today, Silica Aerogel Composites Novel Factorian Methods”, Springer Science+Business Media, Singapore, (2016).
  • [6] Schneider M., Baiker A., “Aerogels in catalysis”, Catalysis Reviews, 37(4): 515-556, (1995).
  • [7] Poco J.F., Satcher J.H., Hrubesh L.W., “Synthesis of high porosity, monolithic alumina aerogels”, Journal of Non-Crystalline Solids, 285(1-3): 57-63, (2001).
  • [8] Yoldas B.E., “Alumina gels that form porous transparent Al2O3”, Journal of Materials Science, 10: 1856-1860, (1975).
  • [9] Tamon H., Ishizaka H., Yamamoto T., Suzuki T., “Freeze drying for preparation of aerogel-like carbon”, Drying Technology, 19(2): 313-324, (2001).
  • [10] Gondal M.A., Fasasi T.A., Mekki A., Saleh T.A., Ilyas A.M., Qahtan T.F., Chang X., “Phase transformation and structural characterization studies of aluminum oxide (Al2O3) nanoparticles synthesized using an elegant pulsed laser ablation in liquids technique”, Nanoscience and Nanotechnology Letters, 8: 1-8, (2016).
  • [11] Oréfice R.L., Vasconcelos W.L., “Sol-gel transition and structural evolution on multicomponent gels derived from the alumina-silica system”, Journal of Sol-Gel Science and Technology, 9: 239-249, (1997).
  • [12] Belskaya O.B., Danilova I.G., Kazakov M.O., Mironenko R.M., Lavrenov A.V., Likholobov V.A., “Infrared Spectroscopy-Materials Science, Engineering and Technology: FTIR Spectroscopy of Adsorbed Probe Molecules for Analyzing The Surface Properties of Supported Pt(Pd) Catalysts”, InTech Published, Croatian, (2012).
  • [13] Yang W., Dou X., Li Y., Mohan D., Pittman C.U., Ok Y.S., “Performance and mass transfer of aqueous fluoride removal by a magnetic alumina aerogel”, RSC Advances, 6(114): 112988-112999, (2016).
  • [14] Bassan P., “Light Scattering During Infrared Spectroscopic Measurements of Biomedical Samples”, Doktora Tezi, University of Manchester Faculty of Engineering and Physical Sciences, (2011).
  • [15] Bono Jr. M.S., Anderson A.M., Carroll M.K., “Alumina aerogels prepared via rapid supercritical extraction”, Journal of Sol-Gel Science and Technology, 53: 216-226, (2010).
  • [16] He F., Sui C., He X., Li M., “Facile synthesis of strong alumina-cellulose aerogels by a freeze-drying method”, Materials Letters, 152: 9-12, (2015).
  • [17] Tok A.I.Y., Boey F.Y.C., Zhao X.L., “Novel synthesis of Al2O3 nano-particles by flame spray pyrolysis”, Journal of Materials Processing Technology, 178: 270-273, (2006).
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ