Robot sistemlerinde kinematik yöntemlerin karşılaştırılması

Robotların kinematik modelinin çıkarılması için Kartezyen ve Kartonyum olmak üzere iki farklı uzay kullanılmıştır. Bu yöntemlerden bazıları ileri yön kinematik için uygunken diğerleri ise ters kinematik çözümler için kullanışlıdır. Aynı kinematik ilişkiyi açıklarken Kartezyen uzayındaki yöntemlerinden elde edilen matrisler, Kartonyum uzayında elde edilen vektörden daha fazla eleman içerir. Bundan dolayı, bilgisayar ortamında Kartonyum uzayında açıklanan kinematik yöntem, Kartezyen uzayında açıklanan kinematik yöntemlerden daha hızlı çalışır.

The comparision of kinematic models of robot systems

In this paper, six methods for the formulation of the robot kinematic equations with serial links are presented. Two different spaces are used in kinematic modeling of robots namely Cartesian space and Quaternion space. Five kinematic methods in Cartesian space and one kinematic method in Quaternion space are described and they are compared to each other. Some of these methods are useable for forward kinematic solutions while some others are for inverse kinematic solutions. Kinematic analysis in Quaternion space does not include redundant elements while Cartesian space analysis does. Therefore, the kinematic models defined in Quaternion space run faster than those defined in Cartesian space in computer environment.

___

  • 1. Nicholas A. Aspragathos and John K. Dimitros, ‘A comparative study of three methods for robot kinematics’, IEEE transactions on systems, man, and cybernatics-part B: Cybernatics, vol. 28, no. 2, April 1988.
  • 2. E.A. Maxwell, ‘General homogeneous coordinates in space of three dimensions’, Cambridge. U. K.: Cambridge Unv. Press, 1900.
  • 3. J. Denavit and R.S. Hartenberg, ‘A kinematic notation for Lower-pair mechanisms based on matrices’, ASME Jappl. Mechan. pp. 215-221, June 1955.
  • 4. R.S. Ball, ‘The theory of screws’, Cambridge. U. K.: Cambridge Unv. Press, 1900.
  • 5. J. Funda and R.P. Paul, ‘Manipulator kinematics and epsilon algebra,’ IEEE J. Robot. Automat., vol. 4, April 1988.
  • 6. J.-H. Kim and V.R.Kumar, ‘Kinematics of robot manipulator via line transformations,’ J. Robot. Syst., vol. 7. no. 4, pp. 649-674, 1990.
  • 7. K.E. Bishop, ‘Rodriguez’ formula and screw matrix,’ Trans. ASME J. Eng. Ind., February 1969.
  • 8. O. Bottema and B. Roth, ‘Theoretical kinematics.’ New York: Dover, 1979.
  • 9. O.P.Agrawal, ‘Hamilton operators and dual-number-quaternions in spatial kinematics,’ Mechanism and Machine Theory, vol. 22, no. 6, pp. 569-575 1987.
  • 10. Özgören, M.K., ‘Application of exponantial rotation matrices to the kinematic analysis of manipulators’, Proceeding Seventh World Congress on the Theory of Machines and Machanisms, Seville, Spain, 1987.
  • 11. Balkan, T., Özgören M.K. ,‘A method of inverse kinematics solution including singular and multiple configurations for a class of robotic manipulators’, Mechanism and Machine Theory, Sep. 1999.
  • 12. Gupta, K.C., ‘Kinematic analysis of manipulators using zero referance position description’, International Journal of Robotics Research:13 May 1986.
  • 13. Pieper, D.L. and Roth, B., ‘The kinematics of manipulators under computer control’, Proceedings of the IFToMM Congress on Theory of Machines and Mechanisms, Warsaw,2:159-168,1969.
  • 14. B.M. Mooring, Z. S. Roth and M. R. Driels, ‘Fundamentals of manipulators calibration’, New York: Wiley, 1991.
  • 15. J.M. Hollerbach, ‘‘A survey of kinematic calibration,’’in O. Khatib, J. J. Craig, and T. Lozano-Perez,End, Robotics Review Cambridge, MA: MIT pres, pp, 208-242, 1988.
  • 16. L.J. Everett, M. Driels, and B.W. Mooring, ‘‘Kinematic modelling for robot calibration in Proc. IEEE Int. Conf. Robotics Automat., pp, 183-189, Nov. 1987.
  • 17. H. Zhuang, ‘‘Kinematic modelling, identification and compensation of robot manipulators,’’ Ph.D. dissertation, Florida Atlantic Univ., Boca Raton, 1989.
  • 18. W. Blaschke, Gesammelte Werke. Essen: Thales-Verlag, 1982. A. T. Yang and F. Freudenstein, ‘‘Application of dual-number quaternion algebra to the analysis of spatial mechanisms,’’ Tran. ASME, J. Appl. Mechanics, vol. 31, pp, 300-308. 1964.
  • 19. W.R. Hamilton ‘Elements of quaternions’, Volume I and II Newyork Chelsea, 1869.
  • 20. E. Perwin and J.A. Webb, ‘Quaternions in vision and robotics’’, Dept. Comput. Sci. Carnegie-Mellon Univ. Tech. Rep, 1982.
  • 21. R.H.Taylor, ‘Planning and execution of straight line manipulators trajectories’ IBM J.Res. Devl. vol. 23, pp, 424-436, July 1999.
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ