NaBH4 Hidrolizi İçin Al2O3 Destekli Çok Bileşenli Nanokatalizör Sentezi ve Kinetik Değerlendirmesi

Yapılan çalışmada Al2O3 destek üzerinde ikili Co-Fe ve üçlü Co-Fe-Pt katalizörleri emdirme tekniği ile sentezlenmiştir. Üretilen katalizörler ile alkali ortamda NaBH4’ün tepkime vermesi sağlanmış ve hidrojen üretim hızı ve kinetik verileri derlenmiştir. Katalizörlerin morfolojik ve boyutsal özelliklerinin anlaşılması maksadı ile taramalı ve geçirimli electron mikroskop (SEM ve TEM) analizleri, hidrojen üretim kapasiteleri ve kinetik verilerin belirlenmesi için ise hidroliz testleri gerçekleştirilmiştir. İki ve üç bileşenli katalizörlerden Co0,95Fe0,05/Al2O3 ve Co0,85Fe0,08Pt0,07/Al2O3 kendi gruplarında en iyi performansı sergilemişlerdir. 40 mg Co0,85Fe0,08Pt0,07/Al2O3 katalizörü ile 20 ˚C sıcaklıkta, 12.750 mL H2/gkat.min hidrojen üretim hızına erişilmiştir. NaBH4 ve katalizör miktarlarını farklılaştırılması ile yapılan çalışmalarda hidrojen üretim hızının katalizör miktarı ile orantılı olduğu ve NaBH4 miktarının tepkime hızına etki mertebesinin 0,22 olduğu görülmüştür. Yüksek aktivite sergileyen Co0,85Fe0,08Pt0,07/Al2O3 katalizörünün aktivasyon enerjisi 26,17 kJ/mol olarak hesaplanmıştır. Bu katalizörün tekrar kullanımlarındaki dönüşüm değerleri aktivitesine oranla daha tatmin edici düzeydedir.

Synthesis and Kinetic Evaluation of Al2O3 Supported Multi-Component Nanocatalyst for NaBH4 Hydrolysis

In this study, dual Co-Fe and triple Co-Fe-Pt catalysts on Al2O3 support were synthesized by impregnation technique. With the produced catalysts, NaBH4 was allowed to react in an alkaline environment and hydrogen production rate and kinetic data were compiled. Scanning and transmission electron microscopy (SEM and TEM) analyzes were carried out in order to understand the morphological and dimensional properties of the catalysts, and hydrolysis tests were performed to determine hydrogen production capacities and kinetic data. Two and three component catalysts Co0.95Fe0.05/Al2O3 and Co0.85Fe0.08Pt0.07/Al2O3 showed the best performance in their groups. With 40 mg Co0.85Fe0.08Pt0.07/Al2O3 catalyst, hydrogen production rate of 12,750 mL H2/gkat.min was reached at 20 ˚C. By differentiating the amount of NaBH4 and catalyst, it was observed that the hydrogen generation is proportional to the amount of catalyst, and the order of reaction with rescept to NaBH4 is 0,22. The activation energy of the high activity Co0.85Fe0.08Pt0.07/Al2O3 catalyst was calculated as 26.17 kJ/mol. The conversion values in the reuse of this catalyst are more satisfactory than its activity.

___

  • [1] Witoon T., Chaipraditgul N., Numpilai T., Lapkeatseree V., Ayodele B.V., Cheng K.C., Siri-Nguan N., Sornchamni T. And Limtrakul J., “Highly active Fe-Co-Zn/K-Al2O3 catalyst for CO2 hydrogenation to light olefins”, Chemical Engineering Science, 233: 116428, (2021).
  • [2] Metin Ö., Şahin Ş. and Özkar S., “Water-soluble poly(4- styrenesulfonic acid-co-maleic acid) stabilized ruthenium(0) and palladium(0) nanoclusters as highly active catalysts in hydrogen generation from the hydrolysis of ammonia–borane”, International Journal of Hydrogen Energy, 34: 6304-6313, (2009).
  • [3] Çakanyıldırım Ç. and Gürü M., “Hydrogen cycle with sodium borohydride”, International Journal of Hydrogen Energy, 33(17): 4634-4639, (2008).
  • [4] Dai F., Wang Y., Zhou X., Zhou X., Zhao R., Han J. and Wang L., “ZnIn2S4 decorated Co-doped NH2-MIL-53(Fe) nanocomposites for efficient photocatalytic hydrogen production”, Applied Surface Science, 517: 146161, (2020).
  • [5] Narasimharao K., Abu-Zied B.M. and Alfaifı S.Y., “Cobalt oxide supported multi Wall carbon nanotube catalst for hydrogen production via sodium borohydride hydrolysis”, International Journal of Hydrogen Energy, 46: 6404-6418, (2021).
  • [6] Abdelhamid H.N., “A review on hydrogen generation from the hydrolysis of sodium borohydride”, International Journal of Hydrogen Energy, 46: 726-765, (2021).
  • [7] Paksoy A., Kurtoğlu S.F., Dizaji A.K., Altıntaş Z., Khoshsima S., Uzun A. and Balcı Ö., “Nanocrystalline cobalt-nickel-boron (metal boride) catalyst for efficient hydrogen production from the hydrolysis of sodium borohydride”, International Journal of Hydrogen Energy, 46: 7974-7988, (2021).
  • [8] Wang X., Liao J., Li H., Wang H. and Wang R., “Preparation of pompon-like Co-B nanoalloy by a room-temperature solid-state-reaction as a catalyst for hydrolysis of borohydride solution”, International Journal of Hydrogen Energy, 42: 6646-6656, (2017).
  • [9] Wang X., Zhao Y., Peng X., Jing C., Hu W., Tian S. and Tian J., “In situ synthesis of of cobalt-based tri-metallic nanosheets as highly efficient catalyst for sodium borohydride”, International Journal of Hydrogen Energy, 41: 219-226, (2016).
  • [10] Wei Y., Wang R., Meng L., Wang Y., Li G., Xin S., Zhao X. and Zhang K., “Hydrogen generation from alkaline NaBH4 solution using a dandelion-like Co-Mo-B catalyst supported on carbon cloth”, International Journal of Hydrogen Energy, 42: 9945-9951, (2017).
  • [11] Öz Ç., Filiz B.C. and Figen A.K., “Hydrogen Gas Production from Chip Magnesium Waste and Investigation of Rate Profiles”, Journal of Polytechnic, 21(3): 681-684, (2018).
  • [12] Olabi A.G., Bahri A.S., Abdelghafar A.A., Baroutaji A., Sayed E.T., Alami A.H., Rezk H. and Abdelkareem M.A., “Large-vscale hydrogen production and storage Technologies: Current status and future directions”, International Journal of Hydrogen Energy, 46(45): 23498-23528, (2021).
  • [13] Brinkerhoff J. and Wang S.C., “Is there a general time scale for hydrogen storage with metal hydrides or activated carbon?”, International Journal of Hydrogen Energy, 46(21): 12031-12034, (2021).
  • [14] Al-Thabaiti A.A., Khan Z. and Malik M.A., “Bimetallic Ag-Ni nanoparticles as an effective catalyst for hydrogen generation from hydrolysis of sodium borohydride”, International Journal of Hydrogen
  • Energy, 44: 16452-16466, (2019).
  • [15] Balciunaite A., Sukackiene Z., Antabaviciute K., Vaiciuniene J., Naujokaitis A., Tamasauskaite-Tamasiunaite L. and Norkus E., “Investigation of hydrogen generation from sodium borohydride using different cobalt catalysts”, International Journal of Hydrogen Energy, 46: 1989-1996, (2021).
  • [16] Xi S., Wang X., Tome C.K., Zhang T., Han Z., Gao M., Zhou S. and Yu H., “Hydrogen release: In situ calorimetry studies of NaBH4+2MgH2 doped by ZrF4”, International Journal of Hydrogen Energy, 46: 922-929, (2021).
  • [17] Khan S.B., Ali F. and Asiri A.M., “Metal nanoparticles supported on polyacrylamide water beads as catalyst for efficient generation of H2 from NaBH4 methanolysis”, International Journal of Hydrogen Energy, 45: 1532-1540, (2020).
  • [18] Wei L., Dong X.L., Yang Y.M., Shi Q.Y., Lu Y.H., Liu H.Y., Yu Y.N., Zhang M.H., Qi M. and Wang Q., “Co-O-P composite nanocatalysts for hydrogen generation from the hydrolysis of alkaline sodium borohydride solution”, International Journal of Hydrogen Energy, 45: 10745-10753, (2020).
  • [19] Liang Y., Wang P. and Dai H.B., “Hydrogen bubbles dynamic template preparation of a porous Fe-Co-B/Ni foam catalyst for hydrogen generation from hydrolysis of alkaline sodium borohydride solution”, Journal of Alloy and Compounds, 491: 359-365, (2010).
  • [20] Soltani M. and Zabihi M., “Hydrogen generation by catalytic hydrolysis of sodium borohydride using the nano-bimetallic catalysts supported on the core-shell magnetic nanocomposite of activated carbon”, International Journal of Hydrogen Energy, 45: 12331-12346, (2020).
  • [21] Nie M., Sun H., Liao J., Li Q., Xue Z., Xue F., Liu F., Wu Mingyu, Gao T. and Teng L., “Study on the catalytic performance of Pd/TiO2 electrocatalyst for hydrogen evolution reaction”, International Journal of Hydrogen Energy, 46: 6441-6447, (2021).
  • [22] Wang K., Si Y., Lv Z., Yu T., Liu X., Wang G., Xie G. and Jiang L., “Efficient and stable Ni-Co-Fe-P nanosheet arrays on Ni foam for alkaline and neutral hydrogen evolution”, International Journal of Hydrogen Energy, 45: 2504-2512, (2020).
  • [23] İzgi M.S., Baytar O., Şahin Ö. and Kazıcı H.Ç., “CeO2 supported multimetallic nano materials as an efficient catalyst for hydrogen generation from the hydrolysis of NaBH4”, International Journal of Hydrogen Energy, 45: 34857-34866, (2020).
  • [24] Balbay A., Selvitepe N. and Saka C., “Fe doped CoB catalysts with phosphoric acidactivated montmorillonite as support for efficient hydrogen production via NaBH4 hydrolysis”, International Journal of Hydrogen Energy, 46: 425-438, (2021).
  • [25] Kilinc D. and Sahin O., “Highly active and stable CeO2 supported nickel complex catalyst in hydrogen generation”, International Journal of Hydrogen Energy, 46: 499-507, (2021).
  • [26] Hansu T.A., Sahin O., Caglar A. and Kivrak H., “A remarkable Mo doped Ru catalyst for hydrogen generation from sodium borohydride the effect of Mo addition and estimation of kinetic parameters”, Reaction Kinetics, Mechanisms and Catalysis, 131: 661-676, (2020).
  • [27] Wang Y., Qi K., Wu S., Cao Z., Zhang K., Lu Y. and Liu H., “Preparation, characterization and catalytic sodium borohydride hydrolysis of nano structured cobalt-phosphorous catalyst”, Journal of Power Sources, 284: 130-137, (2015).
  • [28] Wang L., Li Z., Liu X., Zhang P. and Xie G., “Hydrogen generation from alkaline NaBH4 solution using electroless-deposited Co-W-P supported on ɣ-Al2O3”, International Journal of Hydrogen Energy, 40: 7964-7973, (2015).
  • [29] Saka C., Eygi M.S. and Balbay A., “Cobalt loaded organic acid modified kaolin clay for the enhanced catalytic activity of hydrogen release via hydrolysis of sodium borohydride”, International Journal of Hydrogen Energy, 46: 3876-3886, (2021).
  • [30] Deng J., Sun B., Xu J., Shi Y., Xie L., Zheng J. and Li X., “A monolithic sponge catalyst for hydrogen generation from sodium borohydride solution for portable fuel cells”, Inorganic Chemistry Frontiers, 8: 35-40, (2021).
  • [31] Yuan, H., Wang S., Ma Z., Kundu M., Tang B., Li J. and Wang X., “Oxygen vacancies engineered self-supported B doped Co3O4 nanowires as an efficient multifunctional catalyst for electrochemical water splitting and hydrolysis of sodium borohydride”, Chemical Engineering Journal., 404: 126474, (2021).
  • [32] Feng W., Yang L., Cao N., Du C., Dai H., Luo W. and Cheng G., “In situ facile synthesis of bimetallic CoNi catalyst supported on graphene for hydrolytic dehydrogenation of amine borane”, International Journal of Hydrogen Energy, 39: 3371-3380, (2014).
  • [33] Shen J., Yang L., Hu K., Luo W. and Cheng G., “Rh nanoparticles supported on graphene as efficient catalyst for hydrolytic dehydrogenation of amine boranes for chemical hydrogen storage”, International Journal of Hydrogen Energy, 40: 1062-1070, (2015).
  • [34] Chen W.Y., Ji J., Duan X.Z., Qian G., Li P., Zhou X.G., Chen D. And Yuan W.K., “Unique reactivity in Pt/CNT catalyzed hydrolytic dehydrogenation of ammonia borane”, Chemical Communications., 50: 2142-2144, (2014).
  • [35] Yao Q., Lu H.Z., Jia Y., Chen X. and Liu X., “In situ synthesis of Rh nanoparticles supported on carbon nanotubes as highly active catalyst for H2 generation from NH3BH3 hydrolysis”, International Journal of Hydrogen Energy, 40: 2207-2215, (2015).
  • [36] Wang H.L., Yan J.M., Wang Z.L. and Jiang Q., “One-step synthesis of Cu@FeNi core-shell nanoparticles: Highly active catalyst for hydrolytic dehydrogenation of ammonia borane”, International Journal of Hydrogen Energy, 37: 10229-10235, (2012).
  • [37] Izgi M.S., Şahin Ö. and Saka C., “ɣ-Al2O3 supported/Co-Cr-B catalyst for hydrogen evolution via NH3BH3 hydrolysis”, Energy Source Part A, 34(14): 1620-1626, (2019).
  • [38] Özdemir O.K., “Analysis of kinetic properties for the hydrolysis reaction of NaBH4 and environmental effects in the hydrogen production of activated Co-Ti (II) -B alloy catalysts”, Journal of the Faculty Engineering and Architecture of Gazi University, 34(3): 1585-1594, (2019).