AM20, AJ21 ve AS21 Magnezyum Alaşımlarının Aşınma ve İşlenebilirlik Davranışları Üzerine Karşılaştırmalı Bir Çalışma

Bu makale, AM20, AJ21 ve AS21 (Mg-2Al-X) döküm magnezyum alaşımlarının mekanik özellikleri, aşınma direnci ve işlenebilirlik davranışları üzerine karşılaştırmalı bir çalışmadır. Bu alaşımlardaki üçüncü alaşım bileşenindeki (x; 0,5 Mn, 1 Sr ve 1 Si ve sabit 2 Al, ağırlıkça %) değişimin mikroyapı (intermetalik fazlar), mekanik ve aşınma özellikleri ve işlenebilirlik üzerindeki etkileri karşılaştırmalı olarak analiz edilmiştir. Bu alaşımların mikroyapısında bulunan intermetalik fazların sertlik, mukavemet, aşınma direnci ve işlenebilirlik özellikleri (kesme kuvveti, yüzey pürüzlülüğü, talaş yığılması-FBU ve ayrıca talaş oluşumu) üzerinde etkisi olduğu görülmüştür. En yüksek mekanik özellikler ve aşınma direnci AS21 (49.2 sertlik ve 181.5 MPa UTS) alaşımındaydı ve en yüksek işlenebilirlik AM20 (kesme kuvveti 35.6N) alaşımındaydı. Alaşımların işlenebilirliği artan kesme hızı ile artmıştır.

A Comparative Study on Wear and Machinability Behaviors of AM20, AJ21 and AS21 Magnesium Alloys

This paper is a comparative study on mechanical properties, wear resistance and machinability behaviors of AM20, AJ21 and AS21 (Mg-2Al-X) cast magnesium alloys. The effects of the changing in third alloy component (x:0.5 Mn, 1 Sr and 1 Si, and constant 2 Al, wt.%) in these alloys on microstructure (intermetallic phases), mechanical and wear properties and machinability (cutting force, surface roughness, FBU and also chip formation) were comparatively analyzed. The highest mechanical properties and wear resistance were in AS21 (i.e. 49.2 hardness and 181.5 MPa UTS) alloy and the highest machinability were in AM20 (cutting force 35.6N) alloy. The machinability of the alloys were increase with increasing cutting speed.

___

  • [1] King J. F. “Development of practical high temperature magnesium casting alloys”, Magnesium alloys and their applications, 14-22, (2000).
  • [2] Schuman S. and Friedrich H.E., “Automotive Applications in Europe”, Magnesium Technology, Metallurgy, Design Data, Applications (Edited by H.E.Friedrich and B.L. Mordike), Springer-Verlag Berlin Heidelberg, Germany, 499-682, (2006).
  • [3] Zhang P., “Creep behavior of the die-cast Mg–Al alloy AS21”, Scripta Materialia, 52(4), 277-282, (2005).
  • [4] Kunst M., Fischersworring-Bunk A., L’Esperance G., Plamondon P. and Glatzel U., “Microstructure and dislocation analysis after creep deformation of die-cast Mg–Al–Sr (AJ) alloy”, Materials Science and Engineering: A, 510, 387-392, (2009).
  • [5] Tönshoff H. K., Denkena B., Winkler R J. and Podolsky C., “Machining, Magnesium Technology, Metallurgy, Design Data, Applications”, (Ed. H. E. Friedrich and B. L.Mordike), Springer-Verlag Berlin Heidelberg, 398, (2006).
  • [6] Akyüz B., “Influence of aluminum content on the machinability of AS series cast Mg alloys”, Trans. Nonferrous Met. Soc., 24, 3452−3458, (2014).
  • [7] King J. F., “Technology of Magnesium and Magnesium Alloys, Magnesium Technology (Edited by H.E. Friedrich and B.L.Mordike) Springer-Verlag Berlin Heidelberg, (2006).
  • [8] Tomac N., Tønnesen K. and Mikac T., “Study of Influence of Aluminum Content on Machinability of Magnesium Alloys”, Strojarstvo: časopis za teoriju i praksu u strojarstvu, 50 (6), 363 – 367, (2008).
  • [9] Tönshoff H.K., Friemuth T., Winkler J. and Podolsky C., “Improving the Characteristics of Magnesium Workpieces by Burnishing Operations”, Magnesium Alloys and their Applications, (Edited by K. U. Kainer), 406, (2006).
  • [10] Ünal M., “An Investigation of Casting Properties of Magnesium Alloys”, Gazi University, Institute of Science And Technology, Ph.D. Thesis, (2008).
  • [11] Evangelista E., Gariboldi E., Lohne O. and Spigarelli S., “High-temperature behaviour of as die-cast and heat treated Mg–Al–Si AS21X magnesium alloy”, Materials Science and Engineering: A, 387, 41-45, (2004).
  • [12] Ma G.R., Li X.L., Xiao L. and Li Q.F., “Effect of holding temperature on microstructure of an AS91 alloy during semisolid isothermal heat treatment”, Journal of Alloys and Compounds, 496, 577–581, (2010).
  • [13] Akyüz B., “Comparison of the machinability and wear properties of magnesium alloys”, The International Journal of Advanced Manufacturing Technology, 75(9-12), 1735-1742, (2014).
  • [14] Gil-Santos A., Moelans N., Hort N. and Van der Biest O., “Identification and description of intermetallic compounds in Mg–Si–Sr cast and heat-treated alloys”, Journal of Alloys and Compounds, 669, 123-133, (2016).
  • [15] Akyüz B., “Influence of Al content on machinability of AM series magnesium alloys”, Kovove Materialy-Metallic Metarials, 56(5), 289-295, (2018).
  • [16] Ünal M., “Effects of solidification rate and Sb additions on microstructure and mechanical properties of as cast AM60 magnesium alloys”, International Journal of Cast Metals Research, 27(2), 80- 8, (2014).
  • [17] Faruk M., Özdemir A., Kainer K.U. and Hort N., “Influence of Ce addition on microstructure and mechanical properties of high pressure die cast AM50 magnesium alloy”, Transactions of Nonferrous Metals Society of China, 23(1), 66-72, (2013).
  • [18] Tsuchiya T., Watanabe K., Matsuda K., Kawabata T., Sakakibara K., Yamaguchi T., Saikawa S. and Ikeno S., “Effect of Al and Mn Contents on Microstructure in AM-Series Magnesium Alloys”, Advanced Materials Research, 409, 379-382, (2012).
  • [19] Zhao N., Hou J. and Zhu S., “Chip ignition in research on high-speed face milling AM50A magnesium alloy”, In: Mechanic Automation and Control Engineering (MACE), Second International Conference on. IEEE, 1102-1105, (2011).
  • [20] Kiełbus A., Rzychoń T. and Cibis R., “Microstructure of AM50 die casting magnesium alloy”, Journal of Achievements in Materials and Manufacturing Engineering, 18(1-2), 135, (2006).
  • [21] Rudajevová A. and Lukáč P., “Comparison of the thermal properties of AM20 and AS21 magnesium alloys”, Materials Science and Engineering: A, 397(1-2), 16-21, (2005).
  • [22] Kubásek J., Vojtěch D., and Martínek M., “Structural characteristics and elevated temperature mechanical properties of AJ62 Mg alloy”, Material Characterization, 86, 270-282, (2013).
  • [23] L'espérance G., Plamondon P., Kunst M. and Fischersworring-Bunk A., “Characterization of intermetallics in Mg–Al–Sr AJ62 alloys", Intermetallics, 18, 1-7, (2010).
  • [24] Trojanová Z., Farkas G., Máthis K. and Lukáč P., “Hardening and Softening Processes in an AJ51 Magnesium Alloy Reinforced with Short Saffil Fibres”, In Magnesium Technology, Springer Cham., 435- 440, (2014).
  • [25] Tönshoff H.K. and Winkler J., “The Influence of Tool Cutting in Machining of Magnesium”, Surface and Coating Technology, 94-95, 610-616, (1997).
  • [26] Liu K., Li X.P. and Liang S.Y., “The mechanism of ductile chip formation in cutting of brittle materials”, Int J Adv. Manuf. Technology, 33, 875-884, (2007).
  • [27] Zhao X.L., Tang Y., Deng W.J. and Zhang F.Y., “Effect of Tool Flank Wear on the Orthogonal Cutting Process”, Key Engineering Materials, 329, 705-710, (2007).
  • [28] Stephenson D. A. and Agapiou J. S. “Metal cutting theory and practice”, 2nd edition, Danver, Taylor & Francis CRC press, USA, 371-550, (2016).
  • [29] Knight W. A. and Boothroyd, G., “Fundamentals of metal machining and machine tools”, 3th edition, Danver, USA: Taylor & Francis CRC Press, 60-320, (2005).
  • [30] Kalpakjian S. and Schmid S.R., “Manufacturing Engineering and Technology”, 6th Edition, New York, USA: Pearson Prentice Hall., 553-658, (2010).
  • [31] Grover M. P., “Principles of Modern Manufacturing”, 4th Edition, Hoboken, USA: John Wiley & Sons Inc., 483-584, (2010).
  • [32] Black J. T. and Kohser, R.A., “Materials & Processes in Manufacturing”, 10th Ed., USA: John Wiley & Sons Inc., 50-270, (2008).
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ