Füzyon-fisyon hibrid reaktöründe yakıt gençleştirilmesi ve zenginleştirilmesi

Konvansiyonel nükleer reaktörlerde nükleer enerji üretimi için gerekli olan nükleer yakıt üretimi ve harcanmış yakıtların gençleştirilmesi ve aynı zamanda enerji üretimi için füzyon-fisyon hibrid reaktörleri üzerinde çalışılmaktadır. Füzyon-fisyon hibrid sistemi, füzyon ve fisyon işlemlerinin bir kombinasyonu olup, özellikleri birbirlerini tamamlar. Hibrid reaktör, yüksek orandaki füzyon nötronlarının yakalanmasıyla füzyon plazmayı çevreleyen mantodaki fertil malzemelerin ($^{238}$U veya $^{232}$Th) fisil malzemelere ($^{239}$Pu veya $^{233}$U) dönüşümü prensibine dayanır. Hibrid reaktörün bir diğer potansiyeli ise yüksek etkinlikle aktinitleri yakmasıdır. Bu çalışma, hibrid reaktörde değişik yakıtlar kullanılarak yapılan çalışmaların genel bir incelemesini sunmaktadır.

Fuel enrichment and rejuvenation in fusion-fission hybrid reactor

Many studies have been done on fusion-fission hybrid reactors for rejuvenation of spent fuels and production nuclear fuel for conventional nuclear reactors. Fusion-fission hybrid system is a combination of fusion and fission processes. Hybrid reactor bases on the principle of conversion of fertil materials ($^{238}$U or $^{232}$Th) surrounding plasma to fissile materials ($^{239}$Pu or $^{233}$U) by transmutation through the capture of high yield fusion neutrons. The other potential of the hybrid reactor is to burn actinides with high efficiency. This paper presents an overwiev of studies done by using different fuels in hybrid reactor.

___

  • 1. Şahin, S., Mainline fusion-fission (hybrid) reactor concepts, Ecole polytechnique Federale de Lausanne Instutut de Genie Atomique PHB-Ecublens, 1015 Lausanne, Switzerland.
  • 2. David, S., Billebaud, A., Brandan, M.E., Brissot, R., Giorni, A., Heuer, D., Loiseaux, J.M., Meplan, O., Nifenecker, H., Viano, J.B., Schapira, J.P., Fast Subcritical Hybrid Reactors for Energy Production: Evolution of Physical Parameters and Induced Radiotoxicities, Nuclear Instruments & Methods in Physics Research A, vol. 443 pp.510-530, (2000).
  • 3. Revol, J. P., An Accelerator-Driven System For the Destruction of Nuclear Waste, Progress in Nuclear Energy, vol.38, No. 1-2, pp. 153-165, (2001).
  • 4. Şahin, S., Physics of the Fusion-Fission (Hybrid) Reactors, 8th International Summer College on Physics and Contemporary Needs, Islamabad, Pakistan (23 July-11 August 1983).
  • 5. Barzilov, A.P., Gulevich, A.V., Zrodnikov, A.V., Kukharchuk, O.F., Polevoy, V.B., Feoktistov, L.P., Neutronics Analysis for a Coupled Blanket System of the Hybrid Fission-Fusion Reactor, IPPE, Obninsk, 1996.
  • 6. Jassby, D.L., Meyer, F., Ku L., Fusion-Fission Hybrid Reactors For Burning Depleted Uranium and LWR Spent Fuel, http ://energystudies .pppl.gov/FFRtext.pdf.
  • 7. Şahin, S., Ünalan, S. and Yapıcı, H., Decrease of the CANDU Spent Nuclear Waste Inventories in Fusion-Fission (Hybrid) Reactors, International Journal of Energy Environment Economics, vol.4, no.l, pp.67- 97,1996.
  • 8 Şahin, S., Yapıcı, H., Rejuvenation of LWR Fuel in Fusion Blankets, Annals of Nuclear Energy, vol.25, no. 16, pp. 1317-1339, 1998.
  • 9. Şahin, S., Yapıcı H. and Baltacıoğlu, E., Fusion Breeder with Enhanced Safeguarding Capabilities Against Nuclear Weapon Profileration, Energy Conversion and Management, vol.39, no.9, pp.899-909, 1998.
  • 10. Yapıcı, H., Çürüttü, İ., Özceyhan, V., and Kırbıyık, M., Potential of a Fusion-Fission Hybrid Reactor Using Various Coolants to Breed Fissile Fuel for LWRs, Annals of Nuclear Energy, vol.26, no.9, pp.821-832, 1999.
  • 11. Şahin, S. and Yapıcı, H., Neutronic Analysis of a thorium Fusion Breeder with Enhanced Protection Against Nuclear Weapon Proliferation, Annals of Nuclear Energy, vol.26, no.l, pp. 13-27, 1998.
  • 12. Yapıcı, H., Şahin, N., and Bayrak, M., Potential of a Moderated (D-T) Fusion Driven Hybrid Reactor Fueled with Thorium to Breed Fissile Fuel for LWRs, Energy Conversion and Management,vol.41 no.5,pp.435-447, 2000.
  • 13. Dyomina E.V., Fenici P., Kolotov V.P., Zucchetti M., Low-activation Characteristics of V-alloys and SiC Composites, Journal of Nuclear Materials, vol. 258-263, pp. 1784- 1790, 1998.
  • 14. Jones R.H., Heinisch H.L., McCarthy K.A., Low Activation Materials, Journal of Nuclear Materials, vol. 271&272, pp. 518-525, 1999.
  • 15. Xu Z., Natesan K., Reed C.B., Smith D.L., Procedure Development of Laser Welding of V-4Cr-4Ti Alloy, International Journal of Refractory Metals&Hard Metals, vol.18, pp. 231-236,2000.
  • 16. Smith D.L., Chung H.M., Matsui H., Rowcliffe A.F., Progress in Vanadium Alloy Development for Fusion Applications, Fusion Engineering and Design, vol.41, pp. 7-14, 1998.
  • 17. Şahin, S., Moir, R.W., Şahinaslan, A., Şahin, H.M., Radiation Damage in Liquid-Protected First Wall Materials for IFE-reactors, Fusion Technology, Part 2(A) 30 (3) pp. 1027-1035, 1996.
  • 18. Şahin, S., Şahinaslan, A., Kaya, M., Neutronic Calculations for a Magnetic Fusion Energy Reactor with Liquid Protection for the First- Wall, Fusion Technology, 34 (2) pp.95-108, 1998.
  • 19. Greenspan, E., Fusion-Fission Hybrid Reactors,University of Illinois, 1984.
  • 20. Benjamin, M. Ma.,Nuclear Reactor Materials and Application, Department of Nuclear Engineering Iowa State University, NewYork, 1983.
  • 21. Collier, J.G. and Hewitt, G.F., Introduction to Nuclear Power, USA, Hemisphere Publishing Corporation, 1987.
  • 22. Choppin, G.R., Rydberg, J., Nuclear Chemistry Theory and Applications, USA, Pergamon Press, 1980.