Bilgisayar destekli montaj sırası planlamada yön graf temsili ve bir örnek çalışma

Bir sistemde yer alan çeşitli parçaların belirli bir sıra ve düzen içinde birleştirilme işlemine montaj denir. Sistemin karmaşıklık düzeyine bağlı olarak parçaların birleştirilme sırası birçok ve farklı şekillerde yapılabilir. Bu sıralardan en uygun ve optimumunun seçimine montaj sırası planlama denmektedir. Bu makalede graf temelli metodlar kullanılarak montaj sırası planlamaya etkin çözümler sağlayacak bir yöntem araştırılmıştır. Montajı oluşturan parçalar ve parçalar arası ilişkiler, montaj bağlantı grafı ve montaj sıraları ise, yön grafı kullanılarak temsil edilmiştir. Her bir montaj durumu, parça küme ayrışmaları ile gösterilmektedir. Birleştirilemeyecek parça alt kümeleri; alt-montaj, stabilite, geömetrik ve mekanik uygunluk sınırlayıcıları kullanılarak belirlenmektedir. Uygun montaj sıralamalarının yön graf temsilini oluşturmada, hiyerarşik seviyeler dikkate alınmıştır. Yaklaşımın dört parçadan oluşan bir pense montaj sıralarını belirlemede nasıl kullanılacağı da gösterilmiştir. Bu örnek montaj için yedi adet uygun montaj sırası elde edilmiştir.

Directed graph representations of assembly sequence planning and a case study

An ordered and sequenced connection process of various components existing in a system is known as assembly. Components can be put together many different forms depending on the complexity level of system. Assembly sequence planning is the choice of the most suitable and optimum one. This paper describes a graph based approach that provides an efficient method for the assembly sequence planning. Components existed in the assembly and the relationships between them are represented by assembly connection graph and possible assembly sequence plans are represented by the use of a directed graph. Within this approach, each assembly state is represented by the decomposition of component sets. Constraints, including sub-assembly, stability, suitability of geometric and mechanic, are used for the establishment of component subsets that do not represent an assembly state. The hierarchical levels are used for the representations of directed graphs of feasible assembly sequences. It is also shown that how to approach can be used for the generation of assembly sequence plans of a device consisting of four components. Seven assembly plans are obtained for this sample assembly.

___

  • 1. Pahl, G. and Beitz, W., Engineering Design, The Design Council, Springer- Verlag, London, 1988.
  • 2. Singh, N., Systems Approach to Computer Integrated Design and Manufacturing, John Wiley & Sons, Inc., International Ed., 1997.
  • 3. Boothroyd, G., Product design for manufacture and assembly, CAD, 26, 7, 505-509, 1994.
  • 4. O'Grady, P. vd., A review of approaches for assembly, Concurent Engineering, 1,3, 5-11, 1991.
  • 5. Laperriere, L. and ElMarghy, A., Assembly sequence planning for simultaneous engineering, Int. J. Adv. Manuf. Technoloy, Springer - Verlag London Limited, 9: 231-244, 1994.
  • 6. Lin, A. C. and Chang, T. C., A framework for automated mechanical assembly planning, J. of Mech. Working Technology, 20, 237-248, 1989.
  • 7. Seow, K. T. and Devanathon, R., Temporal logic programming for assembly sequence planning, AI in Engineering, 1994 Elsevier Science Lim., 8, 253-263, 1993.
  • 8. Kandi, S. and Makino, H., ASPEN: Computeraided assembly sequence planning and evaluation system based on predetermined time standard, Annals of the CIRP, 45, 1, 35-39, 1996.
  • 9. Garrod, W. and Everett, L. J., A.S.A.P.: Automated sequential assembly planner, Comp. in Eng., ASME, Ed. G. L. Kinzel Smrophe, 1, 139-150, 1990.
  • 10. Thomas J.P., vd., Computer Aided Mechanical Assembly Planning, Kulwer Academic Publishers, 1991.
  • 11. De Fazio, T.L. and Whitney, D. E., Simplified generation of all mechanical assembly sequences, IEEE Trans, on Robotics and Automation, 3, 6, 640-658, 1987.
  • 12. Homem de Mello, L. S. and Sanderson, A. C., A correct and complete algorithm for the generation of mechanical assembly sequences, IEEE Trans. On Robotics and Automation, 7, 2, 228-240, 1991.
  • 13.Homem de Mello, L.S. and Lee, S., Computeraided mechanical assembly planning, Kulwer Academic Publishers, Massachusetts, 1991.
  • 14. Homem de Mello, L.S. and Arthur, C.D., AND/OR graph representation of assembly plans, IEEE Trans. On Robotics and Automation, 6, 2, 188-199, 1990.
  • 15. Zhang, W., Representation of assembly and automatic robot planning by Petri Net, IEEE Trans. On Systems, Man, and, Cybernetics, 19,2, 418-422, March 1989.
  • 16. Cao, T. and Sanderson, A.C., Task sequence planning in a robot workcell using AND/OR Nets, IEEE Int. Symp. On Intelligent Control, Arlington, VA, August 1991.
  • 17. Suzuki, T., Kanehara, T., Inaba, A. and Okuma, S., On algebraic and graph structural properties of assembly Petri Nets, IEEE Int. Conf. on Robotics and Automation, Atlanta, GA, 507-514, May 1993.
  • 18. Lee, S. and Shin, Y.G., Assembly planning based on gemetric reasoning, Computation and Graphics, 14, 2, 237-250, 1990.
  • 19. Bullinger, Hans-Jorg and Jiedel, A., Assembly sequence planning using operations networks, In production research Approaching 21 st Century (Editors: Pridhan, M. And O.E. Brien, C.), Taylor and Francis, 495, 1991.
  • 20. Wolter, J.D., On the automatic generaion of plans for mechanical assembly, PhD thesis, Univ. Of Michigan, 1988.
  • 21. Pandey, P. C. and Safvananthan, V. C., An automated assembly sequence planning system for mechanical parts, http://www.sat.ait.ac.th/ej-sat/articles/l. 1/vcsfull. html.
  • 22. McHugh, J.A., Algorithmic Graph Theory, Prentice-Hall Int., Inc,, Int. edition, 1990.