Uçucu kül ve pirinadan plastik kompozit malzeme üretimi

Bu çalışmada; uçucu kül ve pirinadan çevre dostu yapı malzemeleri kazandırılması amaçlanmıştır. Bağlayıcı olarak sentezlenen fenol formaldehit reçinesi uçucu kül ve pirina ile doyurulmuş, kalıplı olarak kurutulmuştur. Bu şekilde reçinenin çapraz bağlanma özelliğinden yararlanılarak suya dayanıklı, sağlam yapı malzemeleri üretilmiştir. Deneylerde katalizör, fenol/formaldehit oranı, dolgu maddesi parametre olarak incelenmiştir. Ürünün özellikleri, parametrelere göre değişmekte; sadece kül, dolgu maddesi olarak kullanıldığında suya dayanıklı, parlak sert yüzeyli seramik görünümünde bir yapı malzemesi, kül pirina ile karıştırılarak kullanıldığında ise, suya dayanıklı, ahşap görünümünde bir yapı malzemesi elde edilmektedir. Pirina ile karışım oranı artırıldığında, ahşap malzemenin yüzey sertliğinde azalma, izlenebilirlik özelliğinde artış kaydedilmektedir. Ayrıca, ahşap malzemelerde görülen çürüme, böceklenme, su tutma gibi birçok problemin görülmesi söz konusu olmamaktadır.

Production of plastic composite material from volatile ash and pomace

In this study, it was aimed to achieve environmental friendly building material from volatile ash and pomace. Phenol formaldehite resin synthesized as bounding agent was saturated with volatile ash and pomace and then was dried as moulded. Thus, the strong building materials with resistance to water were produced by utilizing the cross-linking poperty of resin. In the tests; catalyst type, phenol/formaldehite ratio and filler content were examined as parameter. The properties of product were changed depending on these parameters; i.e. a building material looks like the ceramic with resistant to water and hard, polished surface when only volatile ash was used as filler whereas, wood like material was obtained with resistant to water when volatile ash-pomace mixture was used. Decrease in surface hardness and increase in working properties of the wood material were recorded, when the mixed ratio with pomace was increased. Further that, the very widely encountered problems with wood materials such as decay, insectisation and deformation due to humidity were not observed in these materials.

___

  • 1. Kim S. J., Jang M., Friction and wear of friction materials containing two different phenolic resins reinforced with aramid pulp, Tribology International, 33 (7), 477-484, 2000.
  • 2. Rimdusit S., Ishida H., Development of new class of electronic packaging materials based on ternary systems of benzoxazine. epoxy, andphenolic resins, Polymer, 41 (22), 7941-7949,2000.
  • 3 Tigani L.W., Pinhas A.R., Mark J. E., Some attempts at introducing flexibility into phenolic resins, Polym.-Plast. Technol., 39 (4), 711-721, 2000.
  • 4. Lee C.F., Chen Y.H., Chiu W.Y., Synthesis and physical poperties of the crosslinking poly(butyl acrylate)/polystyrene core-shell composite latex, Polymer J., 32 (8), 629-636, 2000.
  • 5. Lee C.F., Effects of initator on the morphology and compatibility of components of poly (methyl methacrylate)/polystyrene composite latex and polymer blends, Polymer J., 32 (8), 642-650, 2000.
  • 6. Fancey K.S., Prestressed polymeric composites produced by viscoelastically strained nylon 6,6 fibre reinforcement, J. Reinf. Plast. Comp,, 19 (15), 1251-1266,2000.
  • 7. Husain M. Mozaffar, Khan Mubarak A., Idriss Ali K.M., Wood-plastic composite in the presence of various acids, Polymer-Plastics Technology and Engineering, 35 (6), 959-969, 1996.