Veri madenciliğinde kullanılan karar ağaçlarının karşılaştırılması

Bu çalışmanın amacı son yıllarda farklı alanlarda kullanılan veri madenciliği yöntemleri tarafından elde edilen karar ağaçlarının farklı ölçütlere göre karşılaştırılmasıdır. Çalışmada PISA 2015 öğrenci anketinde yer alan 12 bağımsız değişken yardımıyla öğrencileri fen okuryazarlığı bakımından başarılı ve başarısız olarak sınıflama amacıyla farklı yöntemler tarafından elde edilen karar ağaçlarının benzer ve farklı yönleri ortaya çıkarılmıştır. Türkiye örnekleminde 15 yaş grubundaki toplam 5895 öğrenciden elde edilen veriler Java tabanlı ve açık kaynak kodlu WEKA programında analiz edilmiştir. Analiz sonucunda doğru sınıflama oranları bakımından en başarılı yöntemlerin sırasıyla lojistik model, Hoefding tree, J.48, REPTree ve Random tree olduğu belirlenmiştir. Bunun yanında faklı öğrenme yöntemleri tarafından elde edilen karar ağaçlarında sınıflamada etkili olan değişkenlerin farklılık gösterdiği belirlenmiştir. Elde edilen sonuçlara göre farklı yöntemler tarafından elde edilen karar ağaçlarında öğrencileri sınıflamada etkili olan bağımsız değişkenlerin farklılık gösterdiği ve tek bir yöntem yerine birden fazla yönteme ilişkin bulguların rapor edilmesi önerilmiştir.

Comparison of decision trees used in data mining

The purpose of this study is to compare decision trees obtained by data miningalgorithms used in various areas in recent years according to different criteria. In thestudy, similar and different aspects of the decision trees obtained by differentmethods for classifying the students as successful and unsuccessful in terms of scienceliteracy were revealed with the help of 12 independent variables included in the PISA2015 student survey. Data collected across Turkey, from a total of 5895 students in theage group of 15, were analyzed in Java-based Weka software, which has an opensource code. As a result of the analysis, it was found that the most successfulalgorithms in terms of correct classification rate were respectively Logistic Model,Hoeffding Tree, J.48, REPTree and Random Tree. In addition, regarding the decisiontrees obtained by different learning algorithms, variables that have been effective inthe classification were found to be different. According to the results, it was concludedthat independent variables found to be effective in the classification of the studentsfor the decision trees obtained by different algorithms differed from each other and itwas suggested to report the finding of more than one algorithm instead of those ofonly one algorithm.

___

  • Almuniri, I., & Said, A. M. (2017). School’s performance evaluation based on data mining. International Journal of Engineering and Information Systems, 1 (9), 56–62.
  • Aydın, S. (2007). Veri madenciliği ve Anadolu Üniversitesi uzaktan eğitim sisteminde bir uygulama. Unpublished doctorate dissertation, Anadolu Üniversitesi, Eskişehir.
  • Bakker, R. (2016). A comparison of decision trees for ingredient classification. Bachelor thesis, University of Amsterdam, Amsterdam.
  • Barros, R. C., Carvalho, A. C. P. L. F. de, & Freitas, A. A. (2015). Automatic design of decision-tree ınduction algorithms. Heidelberg, NY: SpringerBriefs in Computer Science.
  • Büyüköztürk, Ş., Kılıç Çakmak, E., Akgün, Ö., Karadeniz, Ş., & Demirel, F. (2016). Eğitimde bilimsel araştırma yöntemleri. Ankara: Pegem Akademi Yayıncılık.
  • Carletta, J. (1993). Assessing agreement on classification tasks: The kappa statistic. Computational Linguistics, 22 (2), 249–254.
  • Cinaroglu, S. (2016). Comparison of performance of decision tree algorithms and random forest: An application on OECD countries health expenditures. International Journal of Computer Applications, 138 (1), 37–41.
  • Dietterich, T. (2000). An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, 40 (2), 139–157.
  • Doreswamy, H. K. (2012). Performance evaluation of predictive classifiers for knowledge discovery from engineering materials data sets. CIIT International Journal of Artificial Intelligent Systems and Machine Learning, 3 (3), 162–168.
  • Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). The KDD process for extracting useful knowledge from volumes of data. Communications of the ACM, 39 (11), 27–34. https://doi.org/10.1145/240455.240464
  • Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2012). How to design and evaluate research in education. New York: McGraw-Hill.
  • Han, J., & Kamber, M. (2006). Data mining concepts and techniques. San Francisco, CA: Morgan Kaufmann Publishers.
  • Hossin, M., & Sulaiman, M. N. (2015). A review on evaluation metrics for data classification evaluations. International Journal of Data Mining & Knowledge Management Process, 5(2), 01–11. https://doi.org/10.5121/ijdkp.2015.5201
  • Hssina, B., Abdelkarim, M., Ezzikouri, H., & Erritali, M. (2014). A comparative study of decision tree ID3 and C4.5. International Journal of Advanced Computer Science and Applications, 4 (2), 13–19. https://doi.org/10.14569/specialissue.2014.040203
  • Huang, S., & Fang, N. (2013). Predicting student academic performance in an engineering dynamics course: A comparison of four types of predictive mathematical models. Computers and Education, 61 (1), 133–145. https://doi.org/10.1016/j.compedu.2012.08.015
  • Imielinski, T., & Mannila, H. (1996). A database perspective on knowledge discovery. Communications of the ACM, 39 (11), 373–408.
  • Kiranmai, B., & Damodaram, A. (2014). A review on evaluation measures for data mining tasks. International Journal Of Engineering And Computer Science, 3 (7), 7217–7220.
  • Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, 2, 1137–1145. https://doi.org/10.1067/mod.2000.109031
  • Kusiak, A. (2001). Data analysis: Models and algorithms. Proceedings of the SPIE Conference on Intelligent Systems and Advanced Manufacturing, In P.E. Orban and G.K. Knopf (Eds), SPIE (pp. 1-9), Boston: MA.
  • Kuyucu, Y. E. (2012). Lojistik regresyon analizi (LRA), yapay sinir ağları (YSA) ve sınıflandırma ve regresyon ağaçları (C&RT) yöntemlerinin karşılaştırılması ve tıp alanında bir uygulama. Unpublished master’s thesis, Gaziosmanpaşa Üniversitesi, Sağlık Bilimleri Enstitüsü, Tokat.
  • Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33 (1), 159–174. https://doi.org/10.2307/2529310
  • Larose, D. T. (2005). Discovering knowledge in data: An introduction to data mining. New Jersey: John Wiley & Sons.
  • Liaw, A., & Wiener, M. (2002). Classification and regression by random forest. R News, 2 (3), 18–22.
  • Lv, S., Kim, H., Zheng, B., & Jin, H. (2018). A review of data mining with big data towards its applications in the electronics industry. Applied Sciences, 7 (582), 2–34. https://doi.org/10.3390/app8040582
  • Lykourentzou, I., Giannoukos, I., Mpardis, G., Nikolopoulos, V., & Loumos, V. (2009). Early and dynamic student achievement prediction in e-learning courses using neural networks. Journal of the American Society for Information Science and Technology, 60 (2), 372–380.
  • Maimon, O., & Rokach, L. (2005). Data mining and knowledge discovery handbook. Secaucus, NJ: Springer-Verlag Inc.
  • Mease, D., & Wyner, A. (2008). Evidence contrary to the statistical view of boosting: A rejoinder to responses. Journal of Machine Learning Research, 9, 195–201.
  • MEB. (2016). PISA 2015 Ulusal Raporu. Millî Eğitim Bakanlığı, Ölçme, Değerlendirme ve Sınav Hizmetleri Genel Müdürlüğü, Ankara.
  • Mohan, V. (2013). Decision trees: A comparison of various algorithms for building decision trees. Retrieved July 23, 2019, from https://pdfs.semanticscholar.org/3399/c175beca3ab4843d67f91bb28f564099d0bb.pdf
  • Neelamegam, S., & Ramaraj, E. (2013). Classification algorithm in data mining: An Overview. International Journal of P2P Network Trends and Technology (IJPTT), 3 (5), 1–5.
  • Podgorelec, V., Kokol, P., Stiglic, B., & Rozman, I. (2002). Decision trees: An overview and their use in medicine. Journal of Medical Systems, 26 (5), 445-463.
  • Rastogi, R., & Shim, K. (2000). PUBLIC: A decision tree classifier that integrates building and pruning. Data Mining and Knowledge Discovery, 4 (4), 315–344.
  • Romero, C., & Ventura, S. (2013). Data mining in education. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 3 (1), 12–27. https://doi.org/10.1002/widm.1075
  • Sieber, J. E. (2008). Data mining: Knowledge discovery for human research ethics. Journal of Empirical Research on Human Research Ethics, 3 (3), 1–2. https://doi.org/10.1525/jer.2008.3.3.1
  • Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing and Management, 45 (4), 427–437. https://doi.org/10.1016/j.ipm.2009.03.002
  • Strobl, C., Malley, J., & Tutz, G. (2009). An introduction to recursive partitioning: Rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychological Methods, 14 (4), 323–348. https://doi.org/10.1037/a0016973.
  • Svetnik, V., Liaw, A., Tong, C., & Wang, T. (2004). Application of breiman’s random forest to modeling structure-activity relationships of pharmaceutical molecules. In F. Roli, J. Kittler, & T. Windeatt, (Eds.). Multiple Classifier Systems (pp. 1-35), Berlin, Heidelberg: Springer.
  • Tan, P.N., Steinbach, M., & Kumar, V. (2005). Introduction to data mining. Boston, USA: Addison-Wesley Longman Publishing Co.
  • Thuraisingham, B. (2003). Web data mining and applications in business ıntelligence and counter terrorism. USA: CRC Press LLC, Boca Raton, FL.
  • Tiwari, M., Jha, M. B., & Yadav, O. (2012). Performance analysis of data mining algorithms in weka. IOSR Journal of Computer Engineering (IOSRJCE), 6 (3), 32–41.
  • Vaus, D. de. (2001). Research design in social research. London: Sage Publications.
  • Vihinen, M. (2012). How to evaluate performance of prediction methods? Measures and their interpretation in variation effect analysis. BMC Genomics, 13 (4), 1-10. https://doi.org/10.1186/1471-2164-13-S4-S2
  • Weiss, S. M., & Kulikowski, C. A. (1991). Computer systems that learn: Classification and prediction methods from statistics, neural nets, machine learning, and expert systems. San Mateo, CA: Morgan Kaufmann.
  • Witten, I. H., & Frank, E. (2005). Data mining: Practical machine learning tools and techniques. San Francisco, CA: Morgan Kaufmann Publishers.
  • Witten, I. H., Frank, E., & Hall, M. (2016). Data mining: Practical machine learning tools and techniques. USA: Morgan Kaufmann Publications.
  • Wu, X., Kumar, V., Ross, Q. J., Ghosh, J., Yang, Q., Motoda, H., … Steinberg, D. (2008). Top 10 algorithms in data mining. Knowledge and Information Systems, 14 (1), 1-37. https://doi.org/10.1007/s10115- 007-0114-2
Pegem Eğitim ve Öğretim Dergisi-Cover
  • ISSN: 2146-0655
  • Başlangıç: 2011
  • Yayıncı: Pegem Akademi Yayıncılık Eğitim Danışmanlık Hizmetleri Tic. Ltd. Şti.