Bianchi Tip-V Evreninde Granda-Oliveros Ölçekli Tsallis Holografik Karanlık Enerji

Yapılan çok çeşitli kozmolojik gözlemler bize evrenimizin ivmeli genişleme fazında olduğunu göstermektedir. karanlık Enerji ve Karanlık Madde bu ivmeli genişlemeye sebeplerinden ikisi olduğu düşünülmektedir. Dolayısıyla son zamanlarda bilim insanları karanlık enerji ve karanlık madde üzerine birçok çalışma yapmaktadır. Özellikle çok sayıda enerji yoğunluğu ifadesi yazılarak uzay zamanın yapısı hakkında araştırmalar yapılmaktadır. Tsallis holografik karanlık enerji (THKE) modeli de bu anlamda güncel ve ilgi çekici bir konumdadır. Çalışmada Bianchi tipi V uzay zaman modeli özelinde Tsallis holografik karanlık enerji modeli ile bazı skaler alanlar (quintessence, takyon, dilaton skaler alanları vb.) arasında bir ilişki kurulmaktadır. Adı geçen ilişki Granda-Oliveros (GO) kesilimi çerçevesinde ele alınmaktadır. Durum denklemi parametresi analitik olarak hesaplanarak evrenimizin bu model için hangi fazda olduğu çizilen grafiklerle araştırılmaktadır. Ayrıca kinetik enerji ile skaler potansiyelin zamanla nasıl değiştiği bulunmaktadır. Sonuçlar yine nümerik olarak grafikler ile analiz edilmektedir.

Tsallis Holographic Dark Energy with Granda-Oliveros Scale in Bianchi-Type V Universe

A wide variety of cosmological observations show us that our universe is in an accelerated expansion phase. Dark Energy and Dark Matter are thought to be two of the causes of this accelerated expansion. Therefore, scientists have recently been doing many studies on dark energy and matter. In particular, many energy density relations are written, and research is done about space-time structure. In this sense, the Tsallis holographic dark energy model is also in a current and interesting position. The study establishes a relationship between the Tsallis holographic dark energy (THDE) model and some scalar fields (quintessence, tachyon, dilaton scalar fields, etc.) specific to the Bianchi-type V space-time model. The relationship above is discussed within the Granda-Oliveros (GO) cut-off framework. The state equation parameter is calculated analytically, and the phase of our universe for this model is investigated with the graphs drawn. In addition, there is how the kinetic energy and the scalar potential change with time. The results are again analyzed numerically with graphs.

___

  • Abbott TMC., et al. Dark energy survey year 1 results: a precise H0 estimate from DES Y1, BAO, and D/H data. Monthly Notices of the Royal Astronomical Society 2018; 480(3): 3879-3888.
  • Abe S. General pseudoadditivity of composable entropy prescribed by the existence of equilibrium. Physical Review E 2001; 63(6): 061105.
  • Ade PAR., et al. Constraints on primordial gravitational waves using Planck, WMAP, and new BICEP2/Keck observations through the 2015 Season. Physical Review Letters 2018; 121(22): 221301.
  • Barboza EM., Nunes RC., Abreu EMC., Neto JA. Dark energy models through nonextensive Tsallis’ statistics. Physica A: Statistical Mechanics and its Applications 2015; 436: 301-310.
  • Banerjee N., Das S. Acceleration of the universe with a simple trigonometric potential. General Relativity and Gravitation 2005; 37: 1695-1703.
  • Bishi BK., Mahanta KL. Bianchi Type-V Bulk viscous cosmic string in ?(?,?) Gravity with Time Varying Deceleration Parameter 2015; 2015, Article ID 491403.
  • Coles P., Ellis P. The case for an open universe. Nature 1994; 370(6491): 609-615.
  • Collins CB., Glass EN., Wilkinson DA. Exact spatially homogeneous cosmologies. General Relativity and Gravitation 1980; 12(10): 805–823.
  • Copeland EJ., Sami M., Tsujikawa S. Dynamics of dark energy. Int. J. Mod. Phys. D 2006; 15(11): 1753-1935. Dheepika M., Mathew TK. Tsallis holographic dark energy reconsidered. The European Physical Journal C 2022; 82(5): 1-14.
  • Erkan S., Pirinccioglu N., Salti M., Aydogdu O. Holographic scalar fields in Kaluza-Klein framework. The European Physical Journal Plus 2017; 132(12): 1-15.
  • Granda LN., Oliveros A. Infrared cut-off proposal for the holographic density. Physics Letters B 2008; 669(5): 275-277.
  • Jorge P., Mimoso JP., Wands D. On the dynamics of k-essence models. Journal of Physics: Conference Series. 2007; 66(1): 012031.
  • Korunur M. Tsallis holographic dark energy in Bianchi type-III space-time with scalar fields. Modern Physics Letters A 2019; 34(37): 1950310.
  • Korunur M. Ghost scalar field dark energy models from an extended Kaluza–Klein perspective. Classical and Quantum Gravity 2021; 38(7): 075004.
  • Kumar SP., Pankaj, Sharma, U.K. Quintessence model of Tsallis holographic dark energy. New Astronomy 2022; 96: 101829.
  • Majhi A. Non-extensive statistical mechanics and black hole entropy from quantum geometry. Physics Letters B 2017; 775: 32-36.
  • Pandey BD., Kumar PS., Sharma UK. New Tsallis holographic dark energy. The European Physical Journal C 2022; 82(3): 1-8.
  • Peiris HV., Komatsu E., Verde L., Spergel DN., Bennett CL., Halpern M., Hinshaw G., Jarosik N., Kogut A., Limon M., Meyer SS., Page L., Tucker GS., Wollack E., Wright EL. First-year Wilkinson microwave anisotropy probe (WMAP)* observations: implications for inflation. The Astrophysical Journal Supplement Series 2003; 148(1): 213.
  • Planck Collaboration, Planck 2018 results. Astronomy and Astrophysics 2018; 641(A6): 1-67.
  • Saridakis EN., Bamba K., Myrzakulov R., Anagnostopoulos FK. Holographic dark energy through Tsallis entropy. Journal of Cosmology and Astroparticle Physics 2018; 2018(12): 012.
  • Sarkar S. Holographic dark energy with linearly varying deceleration parameter and escaping big rip singularity of the Bianchi type-V universe. Astrophysics and Space Science 2014; 352(2): 859-866. 2295 Sebastiani L., Myrzakul S., Myrzakulov R. Reconstruction of k-essence inflation in Horndeski gravity. The European Physical Journal Plus 2017; 132(10): 1-11.
  • Sheykhi A., Bagheri A. Quintessence ghost dark energy model. EPL (Europhysics Letters) 2011; 95(3): 39001. Srivastava S., Sharma UK., Pradhan A. New holographic dark energy in Bianchi-III universe with k-essence. New Astronomy 2019; 68: 57-64.
  • 't Hooft G. Dimensional Reduction in Quantum Gravity, 1993; arXiv:gr-qc/9310026. Tavayef M., Sheykhi A., Bamba K., Moradpour, H. Tsallis holographic dark energy. Physics Letters B 2018; 781: 195-200.
  • Tsallis C., Cirto LJL. Black hole thermodynamical entropy. The European Physical Journal C 2013; 73(7): 1-7. Wolfram Research Inc. 2012 Mathematica 9.0 (Software).
  • Yerzhanov K., Meirbekov B., Bauyrzhan G., Myrzakulov R. Cosmological solutions of F (R, T) gravity model with k-essence. Journal of Physics: Conference Series 2019; 1391: 012163.
  • Zadeh MA., Sheykhi A., Moradpour H. Tsallis agegraphic dark energy model. Modern Physics Letters A 2019; 34(11): 1950086.
Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 2687-3729
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2018
  • Yayıncı: Osmaniye Korkut Ata Üniversitesi