Odun lifi takviyeli polivinil asetat rijit köpüklerin üretimi

Bu çalışmada, dondur-kurut tekniği kullanılarak tasarlanmış ve üretilmiş rijit köpükler polivinil asetattan (PVAc), ağartılmış kraft hamurundan ve ağartılmamış kraft hamurundan yapılmıştır. Rijit köpük çevre dostu bir ürün olarak üretim aşamasında pentan veya hidrokloroflorokarbon içermemektedir. PVAc bazlı köpük farklı oranlarda kraft hamuru ile güçlendirilmiştir. Basınç, eğilme kuvvetleri, fiziksel ve morfolojik özellikleri gibi performans özellikleri ilgili standartlara göre incelenmiştir. Köpük yoğunlukları %17,65 varyasyon katsayısı (CV) ile 0,018 g/cm3ve %2,33 CV ile 0,137 g/cm3 arasında değişmektedir. Basınç direnci %50,00 CV ile 0,001 N/mm2 ve %5,98 CV ile 0.03 N/mm2arasında değişmektedir. Eğilme direnci ise %20,00 CV ile 0,005 N/mm2 ve %6,06 CV ile 0,11 N/mm2arasında bulunmuştur. Optimum özellikler B-4’ten (PVAc/Ağartılmış Kraft hamuru 1/0.8) elde edilmiştir. Ağartılmış kraft hamur takviyesi, ağartılmamış kraft hamur takviyesine kıyasla köpük malzemenin performans özellikleri üzerinde daha iyi sonuçlar vermiştir. Tüm test sonuçlarına göre PVAc bazlı rijit köpüğün umut verici sonuçlar sergilediği gözlenmiştir.

Manufacture of wood fiber reinforced polyvinyl acetate rigid foams

In this work, rigid foams designed and manufactured using the freezedrying technique were made from polyvinyl acetate (PVAc), bleachedkraft pulp and unbleached kraft pulp. The rigid foams designed asan environmentally-friendly product with no pentane or hydrochlorofluorocarbon included in the manufacturing process. The PVAcbased foams were reinforced with different kraft pulp contents. Theirperformance properties such as compressive and flexural strength,physical and morphological properties were investigated according torelevant standards. The foam densities ranged from 0,017 g/cm3 with%17,65 coefficient of variation (CV) to 0,137 g/cm3 with %2,33 CV.The compression resistance was found between 0,001 N/mm2 with%50,00 CV and 0,03 N/mm2 with %5,98 CV. The flexural resistancewas found between 0,005 N/mm2 with %20,00 CV and 0,11 N/mm2with %6,06 CV. Optimum properties were observed at B-4 (PVAc/Bleached Kraft pulp 1/0.8). Bleached kraft pulp reinforcement gavebetter results on performance characteristics of foam materials compared to unbleached kraft pulp reinforcement. Overall test resultsshowed that the PVAc based rigid foams have promising results.

___

  • Ahmadzadeh S, Nasirpour A, Keramat J, Hamdami N, Behzad T, Desobry S., 2015. Nanoporous cellulose nanocomposite foams as high insulated food packaging materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects 468, 201–210.
  • Amann, M., Minge, O., 2011. Biodegradability of Poly (vinyl acetate) and Related Polymers. Advances in Polymer Science 245, 137–172.
  • ASTM C165, 2007. Standard test method for measuring compressive properties of thermal insulations. ASTM International, Geneva, Switzerland.
  • ASTM C203, 2012. Standard test method for breaking load and flexural properties of block-type thermal insulation. ASTM International, Geneva, Switzerland.
  • ASTM C303, 2010. Standard test method for dimensions and density of performed block and board-type thermal insulation. ASTM International, Geneva, Switzerland
  • BWPA, 2019. What is Wood Pulp? https://www.bwpa. org.uk/wood-pulp/ (Last visited: 12.08.2019)
  • Crowly J., Bell D., Kopp-Holtwiesche B., 2005. Environmentally-favorable erosion control with a polyvinyl acetatebased formulation. Quattro Environmental, Inc. Technical Report.
  • Dash, R., Li, Y., Ragauskas, A. J., 2012. Cellulose nanowhisker foams by freeze casting. Carbohydrate polymers 88(2), 789-792.
  • De Rodriguez, N. L. G., Thielemans, W., Dufresne, A., 2006. Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13(3), 261-270.
  • Ek, M., Gellerstedt, G., Henriksson, G., 2009. Pulping chemistry and technology (Vol. 2). KTH Royal Institute of Technology, Walter de Gruyter, Stockholm.
  • Geng, S., Haque, M. M.-U., Oksman, K., 2016. Crosslinked poly(vinyl acetate) (PVAc) reinforced with cellulose nanocrystals (CNC): Structure and mechanical properties. Composites Science and Technology 126, 35-42.
  • Glenn, G. M., Irving, D. W., 1995. Starch-based microcellular foams. Cereal Chemistry 72(2), 155-161.
  • Glenn, G. M., Orts, W. J., 2001. Properties of starchbased foam formed by compression/explosion processing. Industrial Crops and Products 13(2), 135-143.
  • Glenn, G. M., Orts, W. J., Nobes, G. A. R., 2001. Starch, fiber and CaCO3 effects on the physical properties of foams made by a baking process. Industrial Crops and Products 14(3), 201-212.
  • Gong, G., Mathew, A. P., Oksman, K., 2011a. Toughening effect of cellulose nanowhiskers on polyvinyl acetate: fracture toughness and viscoelastic analysis. Polymer Composites 32(10), 1492–1498.
  • Gong, G., Pyo, J., Mathew, A. P., Oksman, K., 2011b. Tensile behavior, morphology and viscoelastic analysis of cellulose nanofiber-reinforced (CNF) polyvinyl acetate (PVAc). Composites Part A: Applied Science and Manufacturing 42(9), 1275–1282.
  • Guan, J., Hanna, M. A., 2004. Extruding foams from corn starch acetate and native corn starch. Biomacromolecules 5(6), 2329-2339.
  • Hamou, K. B., Kaddami, H., Dufresne, A., Boufi, S., Magnin, A., Erchiqui, F., 2018. Impact of TEMPO-oxidization strength on the properties of cellulose nanofibril reinforced polyvinyl acetate nanocomposites. Carbohydrate polymers 181, 1061-1070.
  • Heydarifard, S., Pan, Y., Xiao, H., Nazhad, M. M., Shipin, O., 2017. Water-resistant cellulosic filter containing non-leaching antimicrobial starch for water purification and disinfection. Carbohydrate polymers 163, 146-152.
  • Iwamoto, S., Kai, W., Isogai, A., Iwata, T., 2009. Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10(9), 2571–2576.
  • Iwatake, A., Nogi, M., Yano, H., 2008. Cellulose nanofiber-reinforced polylactic acid. Composites Science and Technology 68(9), 2103–2106.
  • Jennings, T. A., 1999. Lyophilization: introduction and basic principles. CRC press.
  • Kaboorani, A., Riedl, B., Blanchet, P., Fellin, M., Hosseinaei, O., Wang, S., 2012. Nanocrystalline cellulose (NCC): A renewable nano-material for polyvinyl acetate (PVA) adhesive. European Polymer Journal 48(11), 1829-1837.
  • Kang, J. S., Choi, G. S., Kwon, An, Y. C., 2008. Innovative Foam Insulation Produced from Cellulose. In Proceedings of BEST3 Conference (pp. 2-4).
  • Lee, S. T., Ramesh, N. S., 2004. Polymeric foams: mechanisms and materials. CRC press.
  • Li, Y., Wang, B., Sui, X., Xu, H., Zhang, L., Zhong, Y., Mao, Z., 2017. Facile synthesis of microfibrillated cellulose/organosilicon/polydopamine composite sponges with flame retardant properties. Cellulose 24(9), 3815-3823.
  • Mathew, A. P., Gong, G., Bjorngrim, N., Wixe, D., Oksman, K., 2011. Moisture absorption behavior and its impact on the mechanical properties of cellulose whiskers based polyvinylacetate nanocomposites. Polymer Engineering & Science 51(11), 2136–2142.
  • Ottenhall, A., Seppänen, T., Ek, M., 2018. Water-stable cellulose fiber foam with antimicrobial properties for bio based low-density materials. Cellulose 25(4), 2599-2613.
  • Radvan, B., 1964. Basic Radfoam process, British Patent Roohani, M., Habibi, Y., Belgacem, N. M., Ebrahim, G., Karimi, A. N., Dufresne, A., 2008. Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. European Polymer Journal 44(8), 2489–2498.
  • Salgado, P. R., Schmidt, V. C., Ortiz, S. E. M., Mauri, A. N., Laurindo, J. B., 2008. Biodegradable foams based on cassava starch, sunflower proteins and cellulose fibers obtained by a baking process. Journal of Food Engineering 85(3), 435-443.
  • Shey, J., Imam, S. H., Glenn, G. M., Orts, W. J., 2006. Properties of baked starch foam with natural rubber latex. Industrial Crops and Products 24(1), 34-40.
  • Shogren, R. L., Lawton, J. W., Tiefenbacher, K. F., 2002. Baked starch foams: starch modifications and additives improve process parameters, structure and properties. Industrial Crops and products 16(1), 69-79.
  • Sjöqvist, M., Gatenholm, P., 2005. The effect of starch composition on structure of foams prepared by microwave treatment. Journal of Polymers and the Environment 13(1), 29-37.
  • Soykeabkaew, N., Supaphol, P., Rujiravanit, R., 2004. Preparation and characterization of jute-and flax-reinforced starch-based composite foams. Carbohydrate Polymers 58(1), 53-63.
  • Suryanegara, L., Nakagaito, A. N., Yano, H., 2009. The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Composites Science and Technology 69(7–8), 1187–1192.
  • Svagan, A. J., Samir, M. A. A., Berglund, L. A., 2008. Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils. Advanced Materials 20(7), 1263-1269.
  • Thoughtco. 2019. What Is EPS or Expanded Polystyrene? https://www.thoughtco.com/what-is-eps-expanded-polystyrene-820450 (Last visited: 12.08.2019).
  • Trejo A.G., 1988. Fungal degradation of polyvinyl acetate. Ecotox. Environ. Safe 16(1), 25 –35.
  • Yang, L, Peng, L, Huining, X, Solmaz, H, Shuangfei, W., 2017. Novel aqueous spongy foams made of threedimensionally dispersed wood-fiber: entrapment and stabilization with NFC/MFC within capillary foams, Cellulose, 24, 241–251 DOI 10.1007/s10570-016-1103-y.
  • Yildirim, N., 2018. Performance Comparison of Biobased Thermal Insulation Foam Board with Petroleumbased Foam Boards on the Market. BioResources 13(2), 3395-3403.
Ormancılık Araştırma Dergisi-Cover
  • ISSN: 2149-0783
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2014
  • Yayıncı: ahu peruzhan ÖZYAKUP
Sayıdaki Diğer Makaleler

Türkiye’deki Prunus avium L. popülasyonlarında bazı kantitatif özellikler için genetik parametrelerin tahmini

Ercan VELİOĞLU, Murat ALAN, Cihan ATMACA, Yusuf TAŞTAN, Burcu UZAN EKEN

Odun hammaddesi üretiminde çalışanların geçirdikleri iş kazası ve meslek hastalıkları yönünden değerlendirilmesi

Emre GÖKSU, Hadiye BAŞAR, Mehmet EROL

Manufacture of wood fiber reinforced polyvinyl acetate rigid foams

Mehmet Emin ERGÜN, Ertan ÖZEN, NADİR YILDIRIM, Berk DALKILIÇ

Odun lifi takviyeli polivinil asetat rijit köpük tasarımı ve üretimi

Mehmet Emin ERGÜN, Ertan ÖZEN, Nadir YILDIRIM, Berk DALKILIÇ

Orman atıklarının pelet olarak değerlendirilme imkânlarının araştırılması

Yasemin SEZGİN, Ayşegül EFENDİOĞLU ÇELİK, Mahmut DOK, Semra ÇOLAK, Asuman İlkay KARGİDAN, Alaettin ÇAKIR, Abdurrahman SEMERCİOĞLU

Kavak Odunu İşleyen İşletmelerin Sosyoekonomik Yapısı ve İşletme Sahiplerinin İş Doyum Özellikleri

Aşkın BOZKURT, İsmet DAŞDEMİR, K. Kubra KALKAN BALCI

Batı Akdeniz Bölgesindeki orman ürünleri sanayinin sertifikasyona yönelik kararı ve bu kararın etkileri

Ersin YILMAZ, Süleyman ALKAN, Arif KAYACAN, Yunus BAYİR, Zafer MAVİ

Ormancılık çalışmalarını kamuoyuna duyuracak etkili kitle iletişim araçlarına yönelik mevcut durum analizi (Isparta OBM örneği)

Arif KAYACAN, Süleyman ALKAN, Ersin YILMAZ, Yunus BAYİR, Uğur Melih ALKAN

Odun lifi takviyeli polivinil asetat rijit köpüklerin üretimi

Nadir YILDIRIM, Mehmet Emin ERGÜN, Ertan ÖZEN, Berk DALKILIÇ

Ormanların su üretim hizmetine yönelik yeni planlama yaklaşımı

Mehmet ÖZDEMİR, Yusuf SERENGİL, İbrahim YURTSEVEN, MUHİTTİN İNAN, Pınar PAMUKÇU ALBERS, Celal TONBUL