Flutriafol ve Triflorlanmış Analoğunun HOMO-LUMO, ESP, NBO ve Lipofilik Karakter Analizleri

Bu mevcut çalışma, hesaplamalı kimya yöntemleri kullanılarak OH/F izosterik yer değiştirmesinin etkilerinin araştırılmasına odaklanmaktadır. Bu amaçla, geniş spektrumlu bir fungisit olan flutriafol ve triflorlanmış analoğu üzerinde B3LYP/6-311++G (d, p) teori düzeyinde Yoğunluk Fonksiyonel Teori (YFT) hesaplamaları yapılmıştır. OH/F izosterik yer değiştirmesinin sınır moleküler orbital enerjilerine, reaktivite davranışlarına, elektrostatik yüzey özelliklerine ve moleküliçi etkileşimlerine yansımaları incelenmiştir. Ayrıca izosterik ve biyoizosterik sübstitüsyonların önemli sonuçlarından biri de birçok açıdan dikkate değer bir parametre olan lipofilik karakterdeki değişimdir. Bu nedenle, söz konusu moleküller için SwissADME ve Molinspiration yazılımı kullanılarak lipofilik karakter değerlendirmeleri yapılmıştır.

HOMO-LUMO, ESP, NBO, and Lipophilic Character Analyses of Flutriafol and Its Trifluorinated Analogue

This current study focuses on the exploration of the impacts of OH/F isosteric replacement using computational chemistry methods. To this end, Density Functional Theory (DFT) calculations at B3LYP/6-311++G (d, p) level of theory were carried out on flutriafol, a broad-spectrum fungicide, and its trifluorinated analogue. The reflections of OH/F isosteric replacement on frontier molecular orbital energies, reactivity behaviors, electrostatic surface properties, and intramolecular interactions were investigated. Also, one of the important consequences of isosteric and bioisosteric replacements is the modification in lipophilic character, which is a remarkable parameter in many respects. Therefore, lipophilic character evaluations were performed for mentioned molecules using SwissADME and Molinspiration software.

___

  • Becke, A. D. (1993). A new mixing of Hartree–Fock and local density‐functional theories. Journal of Chemical Physics, 98, 1372–1377. https://doi.org/10.1063/1.464304
  • Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 98, 5648–5652. https://doi.org/10.1063/1.464913
  • Benfenati, E., Gini, G., Piclin, N., Roncaglioni, A., & Varı, M. R. (2003). Predicting logP of pesticides using different software. Chemosphere, 53, 1155–1164. https://doi.org/10.1016/S0045-6535(03)00609-X
  • Beyer, M., Klix, M. B., Klink, H., J. A., & Verreet, J. A. (2006). Quantifying the effects of previous crop, tillage, cultivar and triazole fungicides on the deoxynivalenol content of wheat grain-a review. Journal of Plant Diseases and Plant Protection, 113, 241–246. https://doi.org/10.1007/BF03356188
  • Bhuiyan, S.A., Croft, B.J. & Tucker, G.R. (2014). Efficacy of the fungicide flutriafol for the control of pineapple sett rot of sugarcane in Australia. Australasian Plant Pathology, 43, 413–419. https://doi.org/10.1007/s13313-014-0282-y
  • Bulti Bakchi, B., Krishna, A. D., Sreecharan, E., Ganesh, V. B. J., Niharika, M., Maharshi, S., Puttagunta, S. B., Sigalapalli, D. K., Bhandare, R. R.,& Shaik, A. B. (2022). An overview on applications of SwissADME web tool in the design and development of anticancer, antitubercular and antimicrobial agents: A medicinal chemist’s perspective. Journal of Molecular Structure, 1259, 132712. https://doi.org/10.1016/j.molstruc.2022.132712
  • Cotterill, P. J. (1993). Effect of flutriafol on saprophytic survival and growth of Rhizoctonia solani (AG-8). Australasian Plant Pathology, 22(2), 53-57. https://doi.org/10.1071/APP9930053
  • Daina, A., Michielin, O., Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 1-13. https://doi.org/10.1038/srep42717.
  • Dennington, R., Keith, T. A., & Millam, J. M. (2016). GaussView, Version 6. Semichem Inc., Shawnee Mission.
  • Dhiabi, M., Bouattour, A., Fakhfakh, M., Abid, S., Paquin, L., Robert, T., Bach, S., Bazureau, J. P., & Ammar, H. (2023). Practical approach to N -benzyl derivatives of 2-amino-8-methoxy-4 H- chromene-3-carbonitrile by reductive amination: Exploration of their effects against protein kinases and in silico ADME profiling. Journal of Molecular Structure 1274, 134319, https://doi.org/10.1016/j.molstruc.2022.134319
  • Dolowy, M., Miszczyk, M., & Pyka, A. (2014). Application of various methods to determine the lipophilicity parameters of the selected urea pesticides as predictors of their bioaccumulation. Journal of Environmental Science and Health, Part B, 49, 730-737. https://doi.org/10.1080/03601234.2014.929481
  • Faro, L. R. (2010). Neurotoxic effects of triazole fungicides on nigrostriatal dopaminergic neurotransmission. In Odile Carisse (Ed.), Fungicides (pp. 405-420). InTech. https://doi.org/10.5772/13109
  • Filler, R. (1986). Biologically-active flourochemicals. Journal of Fluorine Chemistry, 33, 1–4. https://doi.org/10.1016/S0022-1139(00)85281-1
  • Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F…Fox, D. J. (2016). Gaussian 16, Rev B.01. Wallingford CT.
  • Gaillard, P., Carrupt, P.A., Testa, B., & Boudon, A. (1994). Molecular lipophilicity potential, a tool in 3D QSAR: Method and applications. Journal of Computer-Aided Molecular Design, 8, 83−96. https://doi.org/10.1007/BF00119860
  • Glendening, E. D., Reed, A. E., Carpenter, J. E., & Weinhold, F. (1998). NBO Version 3.1, TCI, University of Wisconsin.
  • Jeschke, P. (2004). The unique role of fluorine in the design of active ingredients for modern crop protection. ChemBioChem, 5, 570-589. https://doi.org/10.1002/cbic.200300833
  • Karaoglanidis, G. S., Karadimos, D. A., Ioannidis, P. M. (2003). Detection of resistance to sterol demethylation-iInhibiting (DMI) fungicides in cercospora beticola and efficacy of control of resistant and sensitive strains with flutriafol. Phytoparasitica 31(4), 373-380. https://doi.org/10.1007/BF02979809
  • Koopmans, T. (1934). Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms. Physica, 1(6), 104–113. https://doi.org/10.1016/S0031-8914(34)90011-2
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785–789. https://doi.org/10.1103/PhysRevB.37.785
  • Lewis, K., Tzilivakis, J., Warner, D., & Green, A. (2016). An international database for pesticide risk assessments and management, Human and Ecological Risk Assessment: An International Journal, 22, 1050–1064. https://doi.org/10.1080/10807039.2015.1133242
  • Liu, S., Zhou, X., Han, W., Li, J., Sun, X., Shen, J., & Wang, L. (2017). Theoretical and experimental insights into the OH-mediated mineralization mechanism of flutriafol. Electrochimica Acta, 235, 223–232. https://doi.org/10.1016/j.electacta.2017.03.062
  • Lu, A., Wang, J., Liu, T., Han, J., Li, Y., Su, M., Chen, J., Zhang, H., L. Wang, L., & Wang, Q. (2014). Small changes result in large differences: Discovery of (−)-incrustoporin derivatives as novel antiviral and antifungal agents. Journal of Agricultural and Food Chemistry, 62, 8799–8807. https://doi.org/10.1021/jf503060k
  • Molinspiration Cheminformatics (1986). Cheminformatics Software Tools. Retrieved September 25, 2022 from https://www.molinspiration.com
  • Murray, J. S., & Sen, K. (1996). Molecular electrostatic potentials: concepts and applications. Elsevier.
  • Murray, J. S., & Politzer, P. (2011). The Electrostatic potential: An overview, Wiley Interdisciplinary Reviews: Computational Molecular Science, 1, 153–163, https://doi.org/10.1002/wcms.19
  • Parr, R. G., & Pearson, R. G. (1983). Absolute hardness: companion parameter to absolute electronegativity. Journal of the American Chemical Society, 105, 7512-7516. https://doi.org/10.1021/ja00364a005
  • Parr, R. G. (1999). Electrophilicity index. Journal of the American Chemical Society, 121, 1922-1924. https://doi.org/10.1021/ja983494x
  • Pasteris, R. J., Hanagan, M. A., J.J. Bisaha, J. J., Finkelstein, B. L., Hoffman, L. E., Gregory, V., Andreassi, J. L., Sweigard, J. A., Klyashchitsky, B. A., Henry, Y. T., & Berger, R. A. (2016). Discovery of oxathiapiprolin, a new oomycete fungicide that targets an oxysterol binding protein. Bioorganic & Medicinal Chemistry, 24, 354–361. https://doi.org/10.1016/j.bmc.2015.07.064
  • Pearson, R. G. (1986). Absolute electronegativity and hardness correlated with molecular orbital theory. Proceedings of the National Academy of Sciences of the United States of America, 83(22), 8440-8441. https://doi.org/10.1073/pnas.83.22.8440
  • Perdew, J. P., Parr, R. G., Levy, M., & Balduz, J. L. (1982). Density-Functional Theory for fractional particle number: derivative discontinuities of the energy. Physical Review Letters, 49, 1691. https://doi.org/10.1103/PhysRevLett.49.1691
  • Perdew, J. P., & Levy, M. (1983). Physical content of the exact Kohn-Sham orbital energies: band gaps and derivative discontinuities. Physical Review Letters, 151(20), 1884-1887. https://doi.org/10.1103/PhysRevLett.51.1884
  • Reed, A. E., Curtiss, L.A., & Weinhold, F. (1988). Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chemical Reviews, 88(6), 899-926. https://doi.org/10.1021/cr00088a005
  • Shuang, Y., Zhang, T., Zhong, H., & Li, L. (2021). Simultaneous enantiomeric determination of multiple triazole fungicides in fruits and vegetables by chiral liquid chromatography/tandem mass spectrometry on a bridged bis(β-cyclodextrin)-bonded chiral stationary phase. Food Chemistry, 345, 128842. https://doi.org/10.1016/j.foodchem.2020.128842
  • Skyner, R. E., McDonagh, J. L., Groom, C. R., van Mourik, T., & Mitchell, J. B. O. (2015). A review of methods for the calculation of solution free energies and the modelling of systems in solution. Physical Chemistry Chemical Physics, 17, 6174-6191. https://doi.org/10.1039/C5CP00288E
  • Weinhold, F., Landis, C. R., Glendening, E. D. (2016). What is NBO analysis and how is it useful? International Reviews in Physical Chemistry, 35(3), 399-440. https://doi.org/10.1080/0144235X.2016.1192262
  • Wise, K. A., Smith, D., Freije, A., Mueller, D. S., Kandel, Y., Allen, T., Bradley, C. A., Byamukama, E., Chilvers, M., Faske, T., Friskop, A., Hollier, C., Ziems, T. A. J., & Tenuta, A. (2019). Meta-analysis of yield response of foliar fungicide-treated hybrid corn in the United States and Ontario, Canada. PLoS One. 14(6), 0217510. https://doi.org/10.1371/journal.pone.0217510
  • Ying, Z., Ling, L., Kunde, L., Xinping, Z., & Weiping, L. (2009), Enantiomer separation of triazole fungicides by high-performance liquid chromatography. Chirality, 21, 421-427. https://doi.org/10.1002/chir.20607
  • Zhang, Q., Hua, X-d., Shi, H-y., Liu, J-s., Tian, M-m., & Wang, M-h. (2015). Enantioselective bioactivity, acute toxicity and dissipation in vegetables of the chiral triazole fungicide flutriafol. Journal of Hazardous Materials, 284, 65–72. https://doi.org/10.1016/j.jhazmat.2014.10.033
  • Zhang, Q., Hua, X., & Yang, Y. (2015). Stereoselective degradation of flutriafol and tebuconazole in grape. Environmental Science and Pollution Research, 22, 4350–4358. https://doi.org/10.1007/s11356-014-3673-2