Fen Bilimleri Öğretmen Adaylarının "Su Bağlamı" Üzerine Düşüncelerinin Tespit Edilmesi

Su bağlamı fen bilimleri dersi öğretim programında yer alan kazanımların büyük bir çoğunluğu için kullanılan ve öğretim materyallerinin ana malzemesi olan bir bağlamdır. Su; madde döngüsü, hal değişimi, ısı - sıcaklık, bitki ve hayvanlarda büyüme, boşaltım sistemi gibi konuların kavratılması için temel materyaldir. Geleceğin öğretmenlerinin su bağlamı hakkında bildiklerinin zihinlerinde nasıl yapılandırdıklarının ortaya çıkarılması gerek fen bilimleri öğretmen adayları gerekse fen eğitimcileri için incelenmesi gereken bir konudur. Bu gereksinimden yola çıkarak mevcut araştırma, fen bilimleri öğretmen adaylarının “su bağlamı" üzerine düşüncelerini tespit etmeyi amaçlamaktadır. Araştırma alan taraması (survey) yöntemi ile yürütülmüştür. Veriler, ülkemizde öğretmen adayı yetiştiren bir eğitim fakültesinin Fen Bilgisi Öğretmenliği bölümünde öğrenim gören 1. sınıfta 103, 2. sınıfta 44, 3. sınıfta 61 ve 4. sınıfta 88 olmak üzere toplam 296 fen bilimleri öğretmen adayının katılımıyla toplanmıştır. Çalışmada veri toplama aracı olarak 6 adet açık uçlu ve 2 adet çizim sorusu olmak üzere toplam 8 sorudan oluşan “Su Bağlamı Testi” kullanılmıştır. Hal değiştirme olayı olmamasına rağmen öğretmen adaylarının yağmur, kar, dolu, çiy ve kırağı oluşumlarını kristalleşme olayı ile açıklamaları, suyun katı haline örnek olan kar, dolu ve kırağı oluşumlarını yorumlayamamaları ve üç haline yönelik suyun tanecikli yapılarını çizememeleri tespit edilen önemli bulgular arasındadır. Araştırma soncunda 1., 2., 3., ve 4. sınıfta öğrenim gören fen bilimleri öğretmen adaylarının suyun hal değişimi, suyun farklı hallerinin tanecikli yapısı ve suyun yoğunluğuna yönelik konularda yetersiz kavramaya sahip oldukları ve zihinlerinde bilimsel bilgilerle değiştirilmesi gereken birçok alternatif kavramanın yer aldığı tespit edilmiştir.

Determining Pre-Service Science Teachers’ Opinions on the Context of Water

It plays a major role in the retention of what is learned when students use concepts they learn in school to solve problems encountered in everyday life (Balkan Kıyıcı &Aydoğdu, 2011; Özmen, 2003). Linking concepts to be acquired with students’ everyday life and presenting them to students through different methods and techniques not only have a positive influence on academic achievement and motivation (Özmen, 2003; Shen, 1993) but also facilitate the process of conceptual change (Ayvacı, ErNas&Dilber, 2016; Belt, Leisvik, Hyde & Overton, 2005; KirmanBilgin, DemircioğluYürükel & Yiğit, 2017; Kirman-Bilgin, ErNas & Şenel Çoruhlu, 2017; King, Bellocchi & Ritchie, 2008; Potter & Overton, 2006; O’Connor & Hayden, 2008). The easiest way to relate science to everyday life is context. Considering the acquisitions in the science curriculum, it is noteworthy that the most used context is “water”. The properties of water including its molecular structure different from other substances, its rarity of being available in three states of matter, the living beings’ need for water to sustain their life, and its use as an important source of energy differentiate the context of water from other contexts. Considering the updated science curriculum (MEB, 2017), it is remarkable that it includes direct acquisitions in relation to the context of water and the context of water in most topics can be used to be linked with everyday life. Accordingly, the purpose of this study is to reveal pre-service science teachers’ opinions on the context of water. The study attempts to determine the opinions of 1st-, 2nd-, 3rd, and 4th-grade pre-service science teachers about the changes of state of water, the molecular structure of water, and the change of water density. Thus, it tries to reveal the current situation. Accordingly, it uses a survey research design. The study sample consisted of a total of 296 pre-service science teachers including 103 first graders, 44 second graders, 61 third graders and 88 fourth graders who study at the Department of Science Teaching in a faculty of education training pre-service teachers in Turkey. The data were collected using the “Water Context Test” consisting of 8 questions including 6 open-ended questions and 2 drawing questions. The questions included in the test are as follows. Table 1. Questions in the Water Context Test Question No Open-ended questions Ques. 1 Which changes of state are observed in the dryness of rivers, rain formation, hail formation, snow formation, dew formation, and hoarfrost formation? Explain with reasons. Ques. 2 How do snow and hail form? Explain your opinions about similarities and differences considering the molecular structure of matter. Ques. 3 The image on the right shows different shapes of falling snow. If you examine snowflakes while it is snowing, you can observe that their shapes are different. Why do you think snowflakes are different from each other? Explain it considering the molecular structure of matter. Ques. 4 Hailstones ca sometimes be pea-sized and other times melon-sized. What is the reason for this? Explain it considering the molecular structure of matter. Ques. 5 Why does water freeze on the surface? Explain it considering the molecular structure of matter. Ques. 6 What kind of movements do the particles of water have when it is solid, liquid, and gas? Drawing Questions Ques. 7 Draw the molecular structure of water in the form of solid, liquid, and gases. Ques. 8 Draw the molecular structure of hail, hoarfrost, snow, and dew. Table 2 below presents how the test questions are analyzed. Table 2. Analysis of Data Obtained from the Water Context Test Questions Question No Data Analysis 1 All answers given by the pre-service science teachers for the changes of matter are presented in tables using percentage and frequency values. The purpose of doing this was to determine how the pre-service teachers organize water-related everyday life events and the changes of states in their minds. Alternative concepts known by the pre-service teachers are also tabulated using percentage and frequency values. 2 The classification proposed by Marek (1986) was used in the analysis of open-ended questions. This classification involves a “sound understanding” of the concept (Code A: an answer that contains a scientifically accurate understanding of particle size), a “partial understanding” (Code B: an answer that involves a macroscopic level of comprehension or a part of accurate comprehension), “misconceptions” (Code C: an understanding that is inconsistent with scientific knowledge, including alternative thoughts), and “no understanding” (Code D: answering “I do not know”, meaningless conceptions). The answers to these questions are also presented in tables using percentage and frequency values. 3 4 5 6 All answers given by the pre-service teachers for the movement of the particles based on the states of water were tabulated using percentage and frequency value

___

  • Adadan, E., Trundle, K. C., & Irving, K. E. (2010). Exploring grade 11 students' conceptual pathways of the particulate nature of matter in the context of multire presentational in struction. Journal of Research in Science Teaching, 47(8), 1004-1035.
  • Adbo, K., & Taber, K. S. (2009). Learners’ mental models of the particle nature of matter: A study of 16‐year‐old Swedish science students. International Journal of Science Education, 31(6), 757-786.
  • Alkış, S. (2007). İlköğretim Beşinci Sınıf Öğrencilerinin Yağış Çeşitlerini ve Oluşumlarını Algılama Biçimleri. Eurasian Journal of Educational Research (EJER), 26, 27-38.
  • Ayas, A. & Özmen, H. (2002). A study of students' level of understanding of theparticulate nature of matter at secondary school level. Bogaziçi University Journal of Education, 19(2), 45-60.
  • Ayvacı, H. Ş., Er Nas, S., & Dilber, Y. (2016). Bağlam temelli rehber materyallerin öğrencilerin kavramsal anlamaları üzerine etkisi: “İletken ve yalıtkan maddeler” örneği. Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 13(1), 51-78.
  • Balkan Kıyıcı, F. & Aydoğdu, M. (2011). Fen bilgisi öğretmen adaylarının günlük yaşamları ile bilimsel bilgileri ilişkilendirebilme düzeylerinin belirlenmesi. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 5(1), 43-61.
  • Belt, S. T., Leisvik, M. J., Hyde, A. J., & Overton, T. L. (2005). Using a context-based approach to under graduate chemistry teaching–a case study for introductory physical chemistry. Chemistry Education Research and Practice, 6(3), 166-179.
  • Bennett, J., Hogarth, S. & Lubben, F. (2003). A systematic review of the effects of context-based and science-technology-society (STS) approaches in the teaching of secondary science: Review summary. EPPI-Centre and University of York.
  • Boz, Y. (2006). Turkish pupils’ conceptions of the particulate nature of matter. Journal of Science Education and Technology, 15(2), 203-213.
  • Brooks, J. G., & Brooks, M. (1999). In search of understanding: The case for constructivist classrooms. ASCD. Chang, H. J. (1998). Korea: the misunderstood crisis. World Development, 26(8), 1555-1561.
  • Chang, H. Y., Quintana, C., & Krajcik, J. S. (2010). The impact of designing and evaluating molecular animations on how well middle school students understand the particulate nature of matter. Science Education, 94(1), 73-94.
  • Chang, R., & Goldsby, K. A. (2014). Genel kimya (R. İnam ve S. Aksoy Çev.). Ankara: Palme Yayıncılık.
  • Demircioğlu, H., & Demircioğlu, G. (2005). Lise 1 öğrencilerinin öğrendikleri kimya kavramlarını değerlendirmeleri üzerine bir araştırma. Kastamonu Eğitim Dergisi, 13(2), 401-414.
  • Ebenezer, J. V., & Erickson, G. L. (1996). Chemistry students' conceptions of solubility: A phenomenography. Science Education, 80(2), 181-201.
  • Erten, H., & Yıldırım, B. (2010). Sınıf öğretmeni adaylarının gazlar konusundaki kavramları anlama düzeyleri ile kavram yanılgılarının tespiti. 9. Ulusal Sınıf Öğretmenliği Eğitimi Sempozyumu içinde (s.335-340). Elazığ: Fırat Üniversitesi.
  • Gilbert, J. K. (2006). On the nature of “context” in chemical education. International Journal of Science Education, 28(9), 957-976.
  • Goodwin, C. (2000). Action and embodiment with insituated human interaction. Journal of Pragmatics, 32(10), 1489-1522.
  • Griffiths, A. K., & Preston, K. R. (1992). Grade‐12 students' misconceptions relating to fundamental characteristics of atoms and molecules. Journal of Research in Science Teaching, 29(6), 611-628.
  • Henriques, L. (2002). Children's ideas about weather: A review of the literature. School Science and Mathematics, 102(5), 202-215.
  • Johnson, P., & Papageorgiou, G. (2010). Rethinking the introduction of particle theory: A substance‐based framework. Journal of Research in Science Teaching, 47(2), 130-150.
  • Johnson, P. (1998a). Children's understanding of changes of state involving the gas state, part 1: Boiling water and the particle theory, International Journal of Science Education, 20(5), 567-583.
  • Johnson, P. (1998b). Progression in children's understanding of a ‘basic’ particle theory: A longitudinal study. International Journal of Science Education, 20(4), 393-412.
  • Kalın, B., & Arıkıl, G. (2010). Çözeltiler konusunda üniversite öğrencilerinin sahip olduğu kavram yanılgıları. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 4(2), 177-206.
  • Kenan, O., & Özmen, H. (2014). Maddenin tanecikli yapısına yönelik iki aşamalı çoktan seçmeli bir testin geliştirilmesi ve uygulanması. Eğitim ve Öğretim Araştırmaları Dergisi, Journal of Research in Education and Teaching, 3(3), 371-378.
  • King, D. T., Winner, E., & Ginns, I. (2011). Outcomes and implications of one teacher‘s approach to context-based science in the middle years. Teaching Science, 57(2), 26-30.
  • King, D., Bellocchi, A., & Ritchie, S. M. (2008). Making connections: Learning and teaching chemistry in context. Research in Science Education, 38(3), 365-384.
  • Kirman Bilgin, A., & Yiğit, N. (2017). Investigation of student' responses on revelation of therelationbetween "particulate nature of matter" topic and contexts. Mersin University Journal of the Faculty of Education, 13(1), 303-322.
  • Kirman Bilgin, A., Demircioğlu Yürükel, F. N. & Yiğit, N. (2017). The effect of developed REACT strategy on the conceptual understanding of students: "Particulate nature of the matter". Turkish Science Education, 14(2), 65-81.
  • Kirman Bilgin, A., Er Nas, S., & Şenel Çoruhlu, T. (2017). The effect of fıre context on the conceptual understandıng of students: “The heat-temperature. European Journal of Education Studies, 3(5), 339-359.
  • Kokkotas, P., Vlachos, I., & Koulaidis, V. (1998). Teaching the topic of the particulate nature of matter in prospective teachers’ training courses. International Journal of Science Education, 20(3), 291-303.
  • Krnel, D., Watson, R., & Glazar, S. A. (1998). Survey of research related to the development of the concept of ‘matter’. International Journal of Science Education, 20(3), 257-289.
  • Marek, E. A. (1986). They misunderstand, but they’ll pass. The Science Teacher, 32–35.
  • Meşeci, B., Tekin, S., & Karamustafaoğlu, S. (2013). Maddenin tanecikli yapısıyla ilgili kavram yanılgılarının tespiti. Dicle Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 5(9), 20-40.
  • Milli Eğitim Bakanlığı Talim ve Terbiye Kurulu Başkanlığı, (2017). İlköğretim kurumları (ilkokullar ve ortaokullar) fen bilimleri dersi öğretim programı. Ankara.
  • O‘Connor, C., & Hayden, H. (2008). Contextualising nanotechnology in chemistry education. Chemistry Education Research and Practice, 9(1), 35-42.
  • Othman, J., Treagust, D. F., & Chandrasegaran, A. L. (2008). An investigation into the relationship between students‘ conceptions of the particulate nature of matter and their understanding of chemical bonding. International Journal of Science Education, 30(11), 1531-1550.
  • Özmen, H. (2003). Kimya Öğretmen Adaylarının Asit ve Baz Kavramlarıyla İlgili Bilgilerini Günlük Olaylarla İlişkilendirebilme Düzeyleri. Kastamonu Eğitim Dergisi, 11(2), 317-324.
  • Özmen, H., Ayas, A., & Coştu, B. (2002). Determination of the science student teachers‘ understanding level and misunderstandings about the particulate nature of the matter. Educational Sciences: Theory & Practice, 2(2), 507-529.
  • Pereira, M. P., & Pestana, M. E. M. (1991). Pupils’ representations of models of water. International Journal of Science Education, 13(3), 313-319.
  • Potter, N. M., & Overton, T. L. (2006). Chemistry in sport: context-based e-learning in chemistry. Chemistry Education Research and Practice, 7(3), 195-202.
  • Pozo, J. I., & Gomez Crespo, M. A. (2005). The embodied nature of implicit theories: The consistency of ideas about the nature of matter. Cognition and Instruction, 23(3), 351-387.
  • Shen, K. (1993). Happy Chemical Education. Journal of Chemical Education. 70, 816-818.
  • Smothers, S. M., & Goldston, M. J. (2010). Atoms, elements, molecules, andmatter: An investigation into the congenitally blind adolescents' conceptual frameworks on the nature of matter. Science Education, 94(3), 448-477.
  • Tsai, C. C. (1999). Overcoming junior high school students’ misconceptions about microscopic views of phase change: a study of an analogy activity. Journal of Science Education and Technology, 8(1). 83-91.
  • URL 1: http://www.storyofsnow.com/blog1.php/how-the-crystal-got-its-six. 11.11.2017.
  • URL 2: http://archive.boston.com/business/technology/articles/2011/02/28/ whats_the_difference_between_snow_and_ice/11.11.2017.
  • Valanides, N. (2000). Primary student teachers’ understanding of the particulate nature of matter and its transformations during dissolving. Chemistry Education Research and Practice, 1(2), 249-262.
  • Wu, H. K. (2003). Linking the microscopic view of chemistry to real‐life experiences: Intertextuality in a high‐school science classroom. Science Education, 87(6), 868-891.
Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi-Cover
  • ISSN: 1300-302X
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1986
  • Yayıncı: Ondokuz Mayıs Üniversitesi Eğitim Fakültesi