PATATES PROTEİNLERİ

Taze patates yumrusu yaklaşık % 1,5-4,0 oranında protein içermektedir. Patates proteinleri özellikle aspartik asit ve glutamik asitçe zengin olup lösin, valin, alanin, lizin ve arjinin aminoasitlerini de önemli miktarlarda bulundururlar. Bitkisel kaynaklı proteinler arasında lizin bakımından en zengin proteinlerden birisi olan patates proteinleri, yaklaşık % 30-60 oranında patatinler, % 20-50 oranında proteaz inhibitörleri ve % 10-30 oranında diğer proteinler olmak üzere üç grupta incelenmektedir. Patates proteinlerinin izole edilmesinde ısı ile çöktürme, izoelektrik çöktürme, tuzlarla çöktürme, organik çözücülerle çöktürme, ultrafiltrasyon ve kromatografi ile ayrıma gibi birçok yöntem denenmiştir. Patates proteinlerinin köpük oluşturma emülsifiye etme ve jelleşme gibi işlevsel özelliklere sahip oldukları gösterilmiştir. Bu makalede patates proteinlerinin bileşimi, izolasyonu, işlevsel özellikleri ve besin değeri hakkında bilgiler verilecektir.

POTATO PROTEINS

Fresh potato tubers contain approximately 1.5-4.0% protein. Potato proteins are particularly rich in aspartic acid and glutamic acids; also contain significant levels of leucine, valine, alanine, lysine and arginine. Potato protein is one of the best plant proteins as a source of lysine. Potato proteins are divided into three groups: patatins (30–60%), protease inhibitors (20–50%) and other proteins (10–30%). Many extraction techniques were applied for the recovery of proteins from potato tubers including thermal coagulation, salt, acid and organic solvent precipitations, ultrafiltration and chromatographic techniques. It was shown that potato proteins have functional properties like foaming, gelling and emulsifying. This paper will give information on the proteins present in potato tuber, their compositions, extraction and functional properties.

___

  • Fresh potato tubers contain approximately 1.5-4.0% protein. Potato proteins are particularly rich in aspartic acid and glutamic acids; also contain significant levels of leucine, valine, alanine, lysine and arginine. Potato protein is one of the best plant proteins as a source of lysine. Potato proteins are divided into three groups: patatins (30–60%), protease inhibitors (20–50%) and other proteins (10–30%). Many extraction techniques were applied for the recovery of proteins from potato tubers including thermal coagulation, salt, acid and organic [29] GIUSEPPIN, M.L.F., VAN DER SLUIS, C., LAUS, M.C., “Native Potato Protein İsolates”, European Patent 1920662, 2008. [30] MIEDZIANKA, J., PEKSA, A., ANIOŁOWSKA, M., “Properties of Acetylated Potato Protein Preparations”, Food Chemistry, 133, 1283-1291, 2012. [31] MIEDZIANKA, J., PEKSA, A., “Effect of pH on Phosphorylation of Potato Protein Isolate”, Food Chemistry, 138, 2321-2326, 2013. [32] PASTUSZEWSKAA, B., TUSNIOA, A., TACIAKA, M., MAZURCZYK, W., “Variability in the Composition of Potato Protein Concentrate Produced in Different Starch Factories—A Preliminary Survey”. Animal Feed Science and Technology, 154, 260-264, 2009. [33] PĘKSA, A., RYTEL, E., KITA, A., LISIŃSKA, G., TAJNER-CZOPEK, A., “The Properties of Potato Protein”, Potato: Food, Nutrition and Health. Food, 3, 79-87, 2009. [34] GONZALEZ, J.M., LINDAMOOD, J.B., DESAI, N., “Recovery of Protein from Potato Plant Waste Effluents by Complexation with Carboxymethylcellulose”, Food Hydrocolloids, 4, 355-363, 1991. [35] VIKELOUDA, M., KIOSSEOGLOU, V., “The Use of Carboxymethylcellulose to Recover Potato Proteins and Control Their Functional Properties”, Food Hydrocolloids, 18, 21-27, 2004. [36] PARTSIA, Z., KIOSSEOGLOU, V., “Foaming Properties of Potato Proteins Recovered by Complexation with Carboxymethylcellulose”, Colloids and Surfaces B: Biointerfaces, 21, 69-74, 2001. [37] WILSON, D.J., CLARK, A.N., Bubble Foam Separation in Waste Treatment. In: Rousseau, R.W. (Ed.), Handbook of Separation Process Technology, Wiley, New York, USA, 1987. [38] WEIJENBERG, D.C., MULDER, J.J., DRINKENBURG, A.A.H., STEMERDING, S., “The Recovery of Protein from Potato Juice Waste Water by Foam Separation”, Industrial and Engineering Chemistry Process Design and Development, 17, 209-214, 1978. [39] LIU, Z., WU, Z., LI, R., FAN, X., “Two-Stage Foam Separation Technology for Recovering Potato Protein from Potato Processing Wastewater Using the Column with the Spiral Internal Component” Journal of Food Engineering, 114, 192-198, 2013. [40] ZWIJNENBERG, H.J., KEMPERMAN, A.J.B., BOERRIGTER, M.E., LOTZ, M., DIJKSTERHUIS, J.F., POULSEN, P.E., KOOPS, G.H., “Native Protein Recovery from Potato Fruit Juice by Ultrafiltration”, Desalination, 144, 331-334, 2002. [41] LØKRA, S., HELLAND, M.H. CLAUSSENC, I.C., STRÆTKVERNA, K.O., EGELANDSDAL, B., “Chemical Characterization and Functional Properties of A Potato Protein Concentrate Prepared by Large-Scale Expanded Bed Adsorption Chromatography”, LWT, 41, 1089-1099, 2008. [42] ANDERSSON, J., SAHOO, D., MATTIASSON, B., “Isolation of Potato Proteins Using Simulated Moving Bed Technology”, Biotechnology and Bioengineering, 101, 1256-1263, 2008. [43] KINSELLA, J.E., “Functional Properties of Soy Proteins”, J. Am. Oil Chem. Soc., 56, 242-258, 1979. [44] BORUCH, M., MAKOWSKI, J., WACHOWICZ, M., DUBLA, W., “Ruckgewinnung der Stickstoffverbindungen aus Kartoffelfruchtwasser”, Die Nahrung, 33, 67-76, 1989. [45] RALET, M. and GUEGUEN, J., “Foaming Properties of Potato Raw Proteins and Isolated Fractions”, Lebensmittel Wissenschaft und Technologie, 34, 266-269, 2001. [46] JACKMAN, R.L., YADA, R.Y., “Functional Properties of Whey-Potato Protein Composite Blends in a Model System”, Journal of Food Science, 53, 1427-1432, 1988. [47] HOLM, F., ERIKSEN, S.J., “A New System for the Production of Starch and Protein from Potato”, Starch, 32, 258-262, 1980. [48] VAN KONINGSVELD, G.A., WALSTRA, P., VORAGEN, A.G.J., KUIJPERS, J.I., VAN BOEKEL, A.J.S.M., GRUPPEN, H., “Effects of Protein Composition and Enzymatic Activity on Formation and Properties of Potato Protein Stabilized Emulsions”, Journal of Agricultural and Food Chemistry, 54, 6419-6427, 2006. [49] CREUSOT, N., WIERENGA, P.A., LAUS, M.C., GIUSEPPIN, M.L.F., GRUPPEN, H., “Rheological Properties of Patatin Gels Compared with β-lactoglobulin, Ovalbumin, and Glycinin”, J. Sci. Food Agric., 91, 253-261, 2011. [50] MITRUS, J., STANKIEWICZ, C., STEC, E., KAMECKI, M., STARCZEWSKI, J., “The Influence of Selected Cultivation on the Content of Total Protein and Amino Acids in the Potato Tubers”, Plant Soil Environmental, 4, 131-134, 2003. [51] GRAF, A.M., “Entwicklung und Anwendung Prozesstechnischer und AnalytischerSysteme zur Wertschöpfung Bioaktiver Inhaltsstoffe aus Kartoffeln”, Universität Hannover, Dissertation, Hannover, 2010. solvent precipitations, ultrafiltration and chromatographic techniques. It was shown that potato proteins have functional properties like foaming, gelling and emulsifying. This paper will give information on the proteins present in potato tuber, their compositions, extraction and functional properties. 6] PEKSA, A., KITA, A., KUŁAKOWSKA, K., ANIOŁOWSKA, M., HAMOUZ, K., NEMS, A., “The Quality of Protein of Coloured Fleshed Potatoes”, Food Chemistry, 141, 2960-2966.2013. [7] VAN GELDER, W.M.J., VONK, C.R., “Amino Acid Composition of Coagulable Protein from Tubers of 34 Potato Varieties and Its Relationship with Protein Content”, Potato Research, 23, 427-434, 1980. [8] FRIEDMAN, M., “Chemistry, Biochemistry, and Dietary Role of Potato Polyphenols”, J. Agric. Food Chem., 45, 1523-1540, 1997. [9] PARK, D.W., BLACKWOOD, C., MIGNERY, A,G., HERMODSON, A,M., LISTER, M.R., “Analysis of the Heterogeneity of the 40,000 Molecular Weight Tuber Glycoprotein of Potatoes by Immunological Methods and by NH2-Terminal Sequence Analysis”, Plant Physiol., 71, 156-160, 1983. [10] POTS, A.M., GRUPPEN, H., HESSING, M., VAN BOEKEL, M.A.J.S., “Isolation and Characterization of Patatin Isoforms”, Journal of Agricultural and Food Chemistry, 47, 4587–4592, 1999. [11] ROMERO, A., BEAUMAL, V., DAVID-BRIAND, E., CORDOBÈS, GUERRERO, F., GUERRERO, A., ANTON, M., “Interfacial and Oil/Water Emulsions Characterization of Potato Protein Isolates”, Journal of Agricultural and Food Chemistry, 59, 9466-9474, 2011. [12] RACUSEN, D., FOOTE, A., “A Major Soluble Glycoprotein of Potato Tubers”, Journal of Food Biochemistry, 1, 13-52, 1980. [13] PAIVA, E., LISTER, R.M., PARK, W.D., “Induction and Accumulation of Major Tuber Proteins of Potato in Stems and Petioles”, Plant Physiol, 71, 161-168, 1983. [14] RALET, M.C., GUÈGUEN, J., “Fractionation of Potato Proteins: Solubility, Thermal Coagulation and Emulsifying Properties”, Lebensm.-Wiss. u.-Technol., 33, 380-387, 2000. [15] RACUSEN, D., WELLER, D.L., “Molecular Mass of Patatin, a Major Potato Tuber Protein”, J. Food Biochem., 8, 103-107, 1984. [16] VAN KONINGSVELD, G.A., Physico-chemical and Functional Properties of Potato Proteins, Wageningen University, Thesis Dissertation, Wageningen, 2001. [17] POTS, A.M., DE JONGH, H.H.J., GRUPPEN, H., HESSING, M., VORAGEN, A.G.J., “The pH Dependence of the Structural Stability of Patatin”, J. Agric. Food Chem., 46, 2546-2553, 1998. [18] ANDREWS, D.L., BEAMES, B., SUMMERS, M.D., PARK, W.D., “Characterization of the Lipid Acyl Hydrolase Activity of the Major Potato (Solanum tuberosum) Tuber Protein, Patatin, by Cloning and Abundant Expression in a Baculovirus Vector”, Biochemical Journal, 252, 199-206, 1988. [19] SCHERER, G.F.E., RYU, S.B., WANG, X.M., MATOS, A.R., HEITZ, T., “Patatin-related Phospholipase A: Nomenclature, Subfamilies and Functions in Plants”, Trends Plant Sci., 15, 693-700, 2010. [20] PEYER, C., BONEY, P., STAUDACHER, E., “Purification and Characterization of ß-xylosidase from Potatoes (Solanum tuberosum)”, BBA-Proteins and Proteomics, 1672, 27-35, 2004. [21] SHEWRY, P.R., “Tuber Storage Proteins”, Annals of Botany, 91, 755-769, 2003. [22] HEIBGES, A., SALAMINI, F., GEBHARDT, C., “Functional Comparison of Homologous Members of Three Groups of Kunitz-Type Enzyme Inhibitors from Potato Tubers (Solanum tuberosum L.)”, Mol. Genet. Genomics, 269, 535-541, 2003. [23] POUVREAU, L., GRUPPEN, H., PIERSMA, S.R., VAN DEN BROEK, L.A.M., VAN KONINGSVELD, G.A., VORAGEN, A.G.J., “Relative Abundance and Inhibitory Distribution of Protease Inhibitors in Potato Juice From cv. Elkana”, J. Agric. Food Chem., 49, 2864-2874, 2001. [24] POUVREAU, L., GRUPPEN, H., VAN KONİNGSVELD, G.A., VAN DEN BROEK, L.A.M., VORAGEN, A.G.J., “Conformational Stability of the Potato Serine Protease Inhibitor Group (cv. Elkana)”, Journal of Agricultural and Food Chemistry, 53, 3191-3196, 2005. [25] BÁRTA, J., HERMANOVÁ, V., DIVIŠ, J., “Effect of Low-Molecular Additives on Precipitation of Potato Fruit Juice Proteins under Different Temperature Regimes”, Journal of Food Process Engineering, 31, 533-547, 2008. [26] WAGLAY, A., KARBOUNE, S., ALLI, I., “Potato protein isolates: Recovery and Characterization of Their Properties” Food Chemistry, 142, 373-382, 2014. [27] PRIGENT, S., Interactions of Phenolic Compounds with Globular Proteins and Their Effects on Food- Related Functional Properties, Wageningen University, Dissertation, Wageningen, 2005. [28] VAN KONINGSVELD, G.A., GRUPPEN, H., DE JONGH, H.J.H., WIJNGAARDS, G., VAN BOEKEL, A.J.S.M., WALSTRA, P., VORAGEN, G.J.A., “Effects of Ethanol on Structure and Solubility of Potato Proteins and the Effects of Its Presence during the Preparation of a Protein Isolate”, Journal of Agricultural and Food Chemistry, 50, 2947-2956, 2002.