YÜKSEK VERİMLİ KRİSTAL SİLİSYUM (c-Si) HETEROEKLEM GÜNEŞ HÜCRELERİ ÜRETİMİ VE KARAKTERİZASYONU

   Tek kristalli silisyum (Si) alttaşlar üzerine ince a-Si tabakalardan oluşan c-silisyum heteroeklem teknolojisi son yıllarda fotovoltaik (FV) alanında bir çok araştırmacı ve bilim adamı tarafından çalışılan önemli bir araştırma konusudur. Silisyum  heteroeklem güneş hücre teknolojisi, yüksek enerji dönüşüm verimliliği ve rekabetçi seri üretim maliyeti ile kendisini ispat etmiş ve yeni geliştirilen teknolojileri bünyesine entegre edebilme kabiliyeti ile potansiyelini ortaya koymuş bir güneş hücresi teknolojisidir Bu çalışmada, silisyum heteroeklem güneş hücrelerinin üretim aşamaları ve karakterizasyonu detaylı bir şekilde çalışılmıştır. a-Si:H incefilmlerin kalınlık, bant aralığı ve taşıyıcı yaşam süresi gibi özellikleri elipsometre, profilometre ve taşıyıcı yaşam süresi cihazı ile araştırılmış ve optimizasyonu yapılmıştır. 6 inç n-tipi c-Si alttaş üzerine büyütülen katkısız ince film tabakalı heteroeklem (heterojunction with intrinsic thin-layer, HIT) yapısı ile %19,7 verimli güneş hücresi üretilmiştir.  

HIGH EFFICENT c-Si HETEROJUNCTION SOLAR CELL FABRICATION AND CHARACTERIZATION

   c-Silicon (c-Si) heterojunction technology consisting of thin amorphous silicon layers on monocrystalline silicon wafers is an important research topic studied by many researchers and scientist in the field of photovoltaic in recent years. Silicon heterojunction solar cell technology is a solar cell technology that has proven itself with high energy conversion efficiency, competitive industrial production cost and has the ability to integrate newly developed technologies into its structure. In this study, the fabrication stages and characterization of silicon heterojunction solar cells are studied in detail. The a-Si: H thin film properties such as thickness, bandgap, carrier lifetime of solar cells were investigated and optimized via ellipsometer, profilometer and carrier lifetime. A 19,7 % efficient solar cell was fabricated on a 6-inch n-type c-Si wafers with intrinsic amorphous thin-layer structure (c-Si HIT). 

___

  • [1] DE WOLF S., DESCOEUDRES A., HOLMAN Z. C., BALLIF C., “High-efficiency silicon heterojunction solar cells: A review”, Green, 2(1), 7-24, 2012[2] LIU, Y., SUN, Y., LIU, W., YAO, J., “Novel high-efficiency crystalline-silicon-based compound heterojunction solar cells: HCT (heterojunction with compound thin-layer)”, Physical Chemistry Chemical Physics, 16 (29), 15400-15410, 2014[3] PATEL, K., TYAGI, P. K., “Technological advances in a-Si: H/c-Si Heterojunction solar cells”. International Journal of Renewable Energy Research (IJRER), 4 (2), 528-538, 2014[4] TAGUCHI, M., YANO, A., TOHODA, S., MATSUYAMA, K., NAKAMURA, Y., NISHIWAKI, T., FUJİTA, K., MARUYAMA, E., “24.7% record efficiency HIT solar cell on thin silicon wafer”. IEEE Journal of Photovoltaics, 4(1), 96-99, 2014[5] TSUNOMURA, Y., YOSHIMINE, Y., TAGUCHI, M., BABA, T., KINOSHITA, T., KANNO, H., SAKATA, H., MARUYAMA, E., TAKANA, M., “Twenty-two percent efficiency HIT solar cell”. Solar Energy Materials and Solar Cells, 93(6), 670-673, 2009[6] SHOCKLEY, W., & QUEISSER, H. J., “Detailed balance limit of efficiency of p‐n junction solar cells”. Journal of applied physics, 32(3), 510-519, 1961[7] MAKOTO, T., MIKIO, T., TAKAO, M., TORU, S., SHINYA, T., SHOICHI, N., HIROSGI, H., YUKINORI, K., “Development of New a-Si/c-Si Heterojunction Solar Cells: ACJ-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer)”. Japanese Journal of Applied Physics, 31(11R), 3518 –3522, 1992[8] TAGUCHI, M., TSUNOMURA, Y., INOUE, H., TAIRA, S., NAKASHIMA, T., BABA, T., SAKATA, H., MARUYAMA, E., “High efficiency HIT solar cell on thin (< 100 μm) silicon wafer”. In Proceedings of the 24th European Photovoltaic Solar Energy Conference 1690–1693, 2009.[9] http://panasonic.net/sanyo/news/2010/12/03-2.pdf, (erişim tarihi 05.02.2019)[10] WANG, Q., PAGE, M., IWANICZKO, E., XU, Y., ROYBAL, L., BAUER, HASOON, F., “Efficient heterojunction solar cells on p-type crystal silicon wafers”. Applied Physics Letters, 96(1), 013507, 2010.[11] LACHENAL, D., ANDRAULT, Y., BAETZNER, D., GUERİN, C., KOBAŞ, M., MENDES, B., BUECHEL, A., “High efficiency silicon heterojunction solar cell activities in Neuchatel, Switzerland”. In 25th European Photovoltaic Solar Energy Conference and Exhibition/5th World Conference on Photovoltaic Energy Conversion, Valencia, Spain, pp: 1272–1275, 2010.[12] STRAHM, B ANDRAULT, Y., BAETZNER, D., GUERİN, C., HOLMES, N., KOBAŞ, M., WAHLI, G., “Progress in silicon hetero-junction solar cell development and scaling for large scale mass production use”, Proc. of the 25th European Photovoltaic Solar Energy Conference and Exhibition and the 5th World Conference on Photovoltaic Energy Conversion, Valencia, Spain, 1286–1289, 2010.[13] FELDMANN, F., BIVOUR, M., REICHEL, C., HERMLE, M., GLUNZ, S., “A passivated rear contact for high-efficiency n-type silicon solar cells enabling high Vocs and FF> 82%”. 28th European Photovoltaic Solar Energy Conference and Exhibition, Fransa, 2013.[14] http://www.kaneka.co.jp/en/service/news/nr201708252/, (erişim tarihi 05.02.2019)[15] http://sunpreme.com/technology-main/, (erişim tarihi 05.02.2019)[16] LIU, J., YAO, Y., XIAO, S. and GU, X., "Review of status developments of high-efficiency crystalline silicon solar cells", Journal of Physics D: Applied Physics 51 (12): 123001, 2018.[17] OHSHITA, Y., KAMIOKA, T. and NAKAMURA, K., "Technology Trend of High Efficiency Crystalline Silicon Solar Cells", AAPPS Bulletin 27 (3), 2-8, 2017.[18] http://www.kaneka.co.jp/wp-kaneka/wp-content/uploads/2017/06/1479120629_101.pdf (erişim tarihi 05.02.2019)[19] https://news.panasonic.com/global/press/data/2016/03/en160302-2/en160302-2.html, (erişim tarihi 05.02.2019) [20] https://www.nrel.gov/pv/assets/pdfs/pv-efficiency-chart.20190103.pdf, (erişim tarihi 05.02.2019)[21] RUCAVADO E., JEANGROS Q., URBAN D. F., Holovský J., REMES Z., DUCHAMP M., LANDUCCI F., Dunin-Borkowski R., KÖRNER W., ELSÄSSER C., HESSLER-WYSER A., MORALES-MASIS M. and BALLIF C., “Enhancing the optoelectronic properties of amorphous zinc-tin oxide by passivation of sub-gap defects: a theoretical and experimental demonstration”, Phys. Rev. B 95, 24, 2017.[22] WERNER J., WALTER A., RUCAVADO E., MOON S.-J., SACCHETTO D., RIENAECKER M., PEIBST R., BRENDEL R., NIQUILLE X., WOLF S. De, LÖPER P., MORALES-MASIS M., NICOLAY S., NIESEN B., BALLIF C., “Zinc Tin Oxide as High-Temperature Stable Recombination Layer for Mesoscopic Perovskite/Silicon Monolithic Tandem Solar Cells”, Appl. Phys. Lett. 109, 2016[23] ALTAN T., Silisyum Hetero-eklem Güneş Hücrelerinde Ön Yüz Metalizasyon Optimizasyonu ve Alternatif Ön Yüz Metalizasyon Yöntemi, Niğde Ömer Halisdemir Üniversitesi Fen Bilimleri Enstitüsü Makine Mühendisliği Ana Bilim Dalı Yüksek Lisans tezi, Türkiye, 2018.
Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 2564-6605
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2017
  • Yayıncı: Niğde Ömer Halisdemir Üniversitesi