SERİ-PARALEL HİBRİT ELEKTRİKLİ TAŞITLARDAKİ GÜÇ DAĞITICI (POWER SPLIT) MEKANİZMASININ MOTOR HIZI DEĞİŞİMİNE BAĞLI İNCELENMESİ

   Hibrit elektrikli taşıtlarda elektrik motoru ve içten yanmalı motor (İYM) olmak üzere farklı karakteristiklere sahip iki farklı tahrik sistemi bulunmaktadır. Bu iki tahrik sistemi farklı taşıt karakteristiklerine uygun olarak seri, paralel veya seri paralel şekilde düzenlenebilmektedir. Günümüzde yaygın olarak hem seri hem de paralel tahrik sistemlerinin avantajlarını en uygun düzeyde birleştiren seri-paralel tahrik sistemi kullanılmaktadır. Seri paralel tahrik sisteminde elektrik motoru ve İYM’nin güç aktarım stratejisinin düzenlenmesi için güç dağıtıcı (power split) mekanizması kullanılmaktadır. Yapılan bu çalışmada belirli hız aralığında sabit tork elde edilebilen bir İYM’nin güç dağıtıcı mekanizmasına adapte edilmesiyle güç aktarım stratejisinin bu hız aralığına bağlı olarak incelenmesi hedeflenmiştir. Güç dağıtıcı mekanizmasında yörünge/güneş dişli oranı sabit tutulmuştur. Bununla birlikte taşıtın için farklı hız ve güç taleplerinde motojeneratörlerin motor/jeneratör durumları ile batarya sisteminin şarj/deşarj durumları İYM’nin farklı hızları için hesaplanmış ve tartışılmıştır. Sonuç olarak güç dağıtıcı mekanizması için sabit torkta İYM hızının etkileri ve İYM hızını etkileyen parametreler belirlenmiştir.

INVESTIGATION OF THE POWER SPLIT MECHANISM IN SERIAL-PARALLEL HYBRID ELECTRIC VEHICLE DEPENDING ON THE ENGINE SPEED VARIATION

   Hybrid electric vehicles have two different powertrain systems with different characteristics, electric motor, and engine (ICE). These two powertrain systems can be arranged in serial, parallel or serial-parallel according to different vehicle characteristics. Nowadays, a serial-parallel drive system is widely used which optimally combines the advantages of both serial and parallel powertrain systems. The power split mechanism is used to manage the power transfer strategy of the electric motor and the ICE in the serial-parallel powertrain system. In this study, it is aimed to analyze the powertrain strategy depending on the speed range by adopting an ICE which can obtain constant torque at a certain speed range to the power split mechanism. In the power split mechanism, the ratio of ring/sun gear is kept constant. However, the motor/generator states of the motogenerators and the charge/discharge states of the battery system for different speed and power requirements for the vehicle have been calculated and discussed for different speeds of the ICE. As a result, for the power split mechanism, the effects of ICE speed on fixed torque and the parameters affecting ICE speed are determined.

___

  • [1] KHAN, M.A., et al., Global estimates of energy consumption and greenhouse gas emissions. Renewable & Sustainable Energy Reviews, 29: p. 336-344. 2014.
  • [2] RESITOGLU, I.A., K. ALTINISIK, and A. KESKIN, The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems. Clean Technologies and Environmental Policy, 17(1): p. 15-27. 2015.
  • [3] MISHINA, Y. and Y. MUROMACHI, Are potential reductions in CO 2 emissions via hybrid electric vehicles actualized in real traffic? The case of Japan. Transportation Research Part D: Transport and Environment, 50: p. 372-384. 2017.
  • [4] BIELACZYC, P., J. WOODBURN, and A. SZCZOTKA, An assessment of regulated emissions and CO2 emissions from a European light-duty CNG-fueled vehicle in the context of Euro 6 emissions regulations. Applied Energy, 117: p. 134-141. 2014.
  • [5] FONTARAS, G. and Z. SAMARAS, On the way to 130gCO 2/km—Estimating the future characteristics of the average European passenger car. Energy Policy, 38(4): p. 1826-1833. 2010.
  • [6] DU, J., et al., Experimental study on fuel economies and emissions of direct-injection premixed combustion engine fueled with gasoline/diesel blends. Energy Conversion and Management, 100: p. 300-309. 2015.
  • [7] JOHNSON, T.V., Diesel emission control: 2001 in Review. 2002, SAE Technical paper.
  • [8] JOHNSON, T.V., Diesel emission control in review. SAE international journal of fuels and lubricants, 1(2008-01-0069): p. 68-81. 2008.
  • [9] SOMÀ, A., Trends and Hybridization Factor for Heavy-Duty Working Vehicles, in Hybrid Electric Vehicles., InTech. 2017.
  • [10] SEVERINSKY, A.J., Hybrid electric vehicle. 1994, Google Patents.
  • [11] SCIARRETTA, A. and L. GUZZELLA, Control of hybrid electric vehicles. IEEE Control systems, 27(2): p. 60-70. 2007.
  • [12] BAUMANN, B.M., et al., Mechatronic design and control of hybrid electric vehicles. IEEE/ASME Transactions On Mechatronics, 5(1): p. 58-72. 2000. 14
  • [13] HUSAIN, I., Electric and hybrid vehicles: design fundamentals.: CRC press. 2011. 18
  • [14] ERJAVEC, J., Hybrid, electric, and fuel-cell vehicles. Cengage Learning. 2012. 19
  • [15] BAYINDIR, K.Ç., M.A. GÖZÜKÜÇÜK, and A. TEKE, A comprehensive overview of hybrid electric vehicle: Powertrain configurations, powertrain control techniques and electronic control units. Energy Conversion and Management, 52(2): p. 1305-1313. 2011. 12
  • [16] MUSARDO, C., et al., A-ECMS: An adaptive algorithm for hybrid electric vehicle energy management. European Journal of Control, 11(4-5): p. 509-524. 2005. 13
  • [17] POWELL, B. and T. PILUTTI. A range extender hybrid electric vehicle dynamic model. in Decision and Control, 1994., Proceedings of the 33rd IEEE Conference on. IEEE. 1994. 15
  • [18] AN, F., M. BARTH, and G. SCORA, Impacts of diverse driving cycles on electric and hybrid electric vehicle performance., SAE Technical Paper. 1997. 16
  • [19] PISTOIA, G., Electric and hybrid vehicles: Power sources, models, sustainability, infrastructure and the market.: Elsevier. 2010. 17
  • [20] GAO, D.W., C. MI, and A. EMADI, Modeling and simulation of electric and hybrid vehicles. Proceedings of the IEEE, 95(4): p. 729-745. 2007.
  • [21] MI, C. and M.A. MASRUR, Hybrid electric vehicles: principles and applications with practical perspectives.: John Wiley & Sons. 2017.
  • [22] CHAN, C. and K. CHAU, Modern electric vehicle technology. Vol. 47.: Oxford University Press on Demand. 2001.
  • [23] EHSANI, M., Y. GAO, and A. EMADI, Modern electric, hybrid electric, and fuel cell vehicles: fundamentals, theory, and design.: CRC press. 2017.
  • [24] SMITH, W.J., Can EV (electric vehicles) address Ireland’s CO 2 emissions from transport? Energy, 35(12): p. 4514-4521. 2010.
  • [25] ÅHMAN, M., Primary energy efficiency of alternative powertrains in vehicles. Energy, 26(11): p. 973-989. 2001.
  • [26] LARMINIE, J. and J. Lowry, Electric vehicle technology explained. 2012: John Wiley & Sons.
  • [27] GAO, Y., L. Chen, and M. Ehsani, Investigation of the Effectiveness of Regenerative Braking for EV and HET., SAE Technical Paper. 1999.
  • [28] AHN, J., et al., Analysis of a regenerative braking system for hybrid electric vehicles using an electro-mechanical brake. International Journal of Automotive Technology, 10(2): p. 229-234. 2009.
  • [29] JOHNSON, V.H., K.B. WIPKE, and D.J. RAUSEN, HET control strategy for real-time optimization of fuel economy and emissions., SAE Technical Paper. 2000.
  • [30] HU, X., Z. WANG, and L. LIAO, Multi-objective optimization of HET fuel economy and emissions using evolutionary computation., SAE Technical Paper. 2004.
  • [31] SCHUDELEIT, M., et al. Fuel and CO2 savings in real driving using machine learning HET operating strategy. in 17. Internationales Stuttgarter Symposium. Springer. 2017.
  • [32] BUECHERL, D., I. BOLVASHENKOV, and H.-G. HERZOG. Verification of the optimum hybridization factor as design parameter of hybrid electric vehicles. in Vehicle Power and Propulsion Conference, 2009. VPPC'09. IEEE. IEEE. 2009. 36
  • [33] LUKIC, S.M. and A. EMADI, Effects of drivetrain hybridization on fuel economy and dynamic performance of parallel hybrid electric vehicles. IEEE transactions on vehicular technology, 53(2): p. 385-389. 2004. 37
  • [34] RAHMAN, Z., M. EHSANI, and K. BUTLER, An investigation of electric motor drive characteristics for EV and HET propulsion systems., SAE Technical Paper. 2000. 38
  • [35] DUOBA, M., H. NG, and R. LARSEN, In-situ mapping and analysis of the Toyota Prius HET engine., SAE Technical Paper. 2000. 39
  • [36] JEONG, J., et al., Optimization of power management among an engine, battery and ultra-capacitor for a series HET: A dynamic programming application. International Journal of Automotive Technology, 18(5): p. 891-900. 2017 40
  • [37] POWELL, B., K. BAILEY, and S. CIKANEK, Dynamic modeling and control of hybrid electric vehicle powertrain systems. IEEE Control Systems, 18(5): p. 17-33. 1998.
  • [38] FRANK, A., et al., Powertrain configurations for two-motor, two-clutch hybrid electric vehicles., Google Patents. 2016.
  • [39] YANG, Y., et al., Comparison of power-split and parallel hybrid powertrain architectures with a single electric machine: dynamic programming approach. Applied Energy, 168: p. 683-690. 2016.
  • [40] SABRI, M., K. DANAPALASINGAM, and M. RAHMAT, A review on hybrid electric vehicles architecture and energy management strategies. Renewable and Sustainable Energy Reviews,. 53: p. 1433-1442. 2016.
  • [41] LIU, W., Introduction to hybrid vehicle system modeling and control.: John Wiley & Sons. 2013.
Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 2564-6605
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2017
  • Yayıncı: Niğde Ömer Halisdemir Üniversitesi