BAZALT/Ni, W/Ni, VE B/Ni FONKSİYONEL DERECELENDİRİLMİŞ KOMPOZİT PLÂKALARIN DİNAMİK BASINÇ YÜKÜ ALTINDAKİ DAVRANIŞLARININ ANALİZİ

   Fonksiyonel Derecelendirilmiş Malzemeler (FDM) diğer ileri kompozit malzemelere göre günümüzde daha önemli bir yer tutmaktadır. Bu çalışmada, yüksek sıcaklık ve basınç uygulamalarında kullanılan bazalt, tungsten (W) ve bor (B) malzemeleri ile nikel (Ni) kullanılarak oluşturulan fonksiyonel derecelendirilmiş plâkaların ani basınç yükleri altındaki lineer olmayan dinamik davranışları modellenmiş ve detaylı analizleri yapılmıştır. Fonksiyonel derecelendirilmiş malzemelerin modellenmesi için Homojen Katmanlı Model (HKM) ve Sürekli Model (SM) yaklaşımları kullanılmıştır. Ani basınç yükü olarak ise Üstel Basınç Yükü Modeli uygulanmıştır. Yapılan detaylı analizler sonucunda W/Ni kompozit plâkaların daha düşük değerde genlik ve titreşim frekansı davranışı gösterdiği, bunun yanında farklı modelleme yöntemleri ve n parametresinin farklı değerlerinin de fonksiyonel derecelendirilmiş kompozit plâkaların dinamik davranışında etkili olduğu olduğu görülmüştür.

ANALYSIS OF BEHAVIOR OF BASALT/Ni, W/Ni AND B/Ni FUNCTIONALLY GRADED COMPOSITE PLATES UNDER DYNAMIC PRESSURE LOADING

   Functionally Graded Materials (FDM) have an important place among other advanced composite materials today. In this study, nonlinear dynamic behaviors under the blast pressure loads of functionally graded plates formed by using different materials such as basalt, tungsten (W), boron (B) and Nickel (Ni), used in high temperature and pressure applications, are modeled and analyzed in detail. Homogeneous Layered Model and Continuous Model approaches are used for modeling functionally graded materials. The Exponential Pressure Loading Model is applied as the blast pressure load. Detailed analysis showed that W/Ni composite plates exhibited lower amplitude and vibration frequency behaviors as well as different modeling methods and different values of n parameter have an effect on the dynamic behavior of functionally graded composite plates.

___

  • [1] MAHAMOOD, R. M., MEMBER, E. T. A., SHUKLA, M., and PITYANA, S., “Functionally Graded Material : An Overview”, Proceedings of the World Congress on Engineering 2012, vol. III, 2–6, 2012.
  • [2] WOO, J., & MEGUID, S. A., “Nonlinear analysis of functionally graded plates and shallow shells”, International Journal of Solids and Structures, 38 (42-43), 7409–7421, 2001.
  • [3] TILBROOK, M. T., MOON, R. J., & HOFFMAN, M., “Finite element simulations of crack propagation in functionally graded materials under flexural loading. Engineering”, Fracture Mechanics, vol. 72(16), 2444–2467, 2005.
  • [4] CHANG, H.-H., & TARN, J.-Q., “A state space approach for exact analysis of composite laminates and functionally graded materials”. International Journal of Solids and Structures, vol. 44(5), 1409–1422, 2007.
  • [5] RUBIO, W. M., PAULINO, G. H., & SILVA, E. C. N., “Analysis, manufacture and characterization of Ni/Cu functionally graded structures”, Materials & Design, vol. 41, 255–265, 2012.
  • [6] ÖKTEM, A. S., “Fonksiyonel Derecelendirilmiş İleri Kompozit Plakların Statik Analizi”, Gazi Üniv. Müh. Mim. Fak. Der. Cilt 29, No 1, 111-119, 2014.
  • [7] ULUKÖY A., “Fonksiyonel Derecelendirilmiş Malzemenin Lineer Burkulma Analizi”, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, Özel Sayı 16, 122‐127, 2016.
  • [8] YILDIRIM B., “Fonksiyonel Derecelendirilmiş Malzemeden Yapılmış Kenar Çatlaklı Bir Tabakada Isıl Şok Kırılmasının Sonlu Elemanlar Metodu İle İncelenmesi”, Gazi Üniv. Müh. Mim. Fak. Der., Cilt 19, No 3, 235-245, 2004.
  • [9] PRAVEEN, G.N. and REDDY, J.N., “Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates”, International Journal of Solids and Structures, 35(33), 4457–4476, 1998.
  • [10] HAUSE, T., “Advanced functionally graded plate-type structures impacted by blast loading”, International Journal of Impact Engineering, vol. 38(5), 314–321, 2011.
  • [11] BAŞTÜRK S., SÜSLER S., UYANIK H., TÜRKMEN H., S, LOPRESTO V., GENNA S., KAZANCI Z., “Experimental and numerical analysis of laminated basalt composite plate subjected to blast load”, Proceedings of the 20th International Conference on Composite Materials (ICCM/20), 19-24, 2015.
  • [12] AKSOYLAR, C., ÖMERCİKOGLU, A., MECİTOGLU, Z., & OMURTAG, M. H., “Nonlinear transient analysis of FGM and FML plates under blast loads by experimental and mixed FE methods”, Composite Structures, vol. 94, 731–744, 2012.
  • [13] ARSLAN, K., GUNES, R., APALAK, M. K., REDDY, JN, “Experimental tests and numerical modeling of ballistic impact on honeycomb sandwich structures reinforced by functionally graded plates”, Journal of Composite Materials, vol. 51, Issue 29, 4009-4028, 2017.
  • [14] AREFI, M., “Buckling analysis of the functionally graded sandwich rectangular plates integrated with piezoelectric layers under bi-axial loads”, Journal of Sandwich Structures & Materials, vol. 19, Issue 6, 712-735, 2016.
  • [15] BAŞTÜRK, S., UYANIK, H., KAZANCI, Z., “Nonlinear Transient Response of Basalt/Nickel FGM Composite Plates Under Blast Load”, Procedia Engineering, vol. 167, 30-38, 2016.
  • [16] BAŞTÜRK, S., “The nonlinear dynamic response of functionally graded basalt/nickel composite plates”, Mechanics of Advanced Materials and Structures, DOI: 10.1080/15376494.2018.1446109, 2018.
  • [17] CHI, S. and CHUNG, Y., “Cracking in coating – substrate composites with multi-layered and FGM coatings”, Engineering Fracture Mechanics, Vol. 70, 1227–1243, 2003.
  • [18] PRAKASH, T., SINGHA, M. K., and GANAPATHI, M., “A finite element study on the large amplitude flexural vibration characteristics of FGM plates under aerodynamic load”, International Journal of Non-Linear Mechanics, Vol. 47, no. 5, 439–447, 2012.
  • [19] SWAMINATHAN, SANGEETHA, K., D.M., “Thermal analysis of FGM plates – A critical review of various modeling techniques and solution methods”, Composite Structures, vol. 160 (15), 43-60, 2017.
  • [20] BANKS-SILLS, L., ELIASİ, R., & BERLIN, Y., “Modeling of functionally graded materials in dynamic analyses”, Composites Part B: Engineering, vol. 33(1), 7–15, 2002.
  • [21] GUPTA, A.D., GREGORY, F.H., BITTING, R.L., BHATTACHARYA, S., “Dynamic analysis of an explosively loaded hinged rectangular plate”, Computers and Structures, vol. 26, 339-344, 1987.
Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 2564-6605
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2017
  • Yayıncı: Niğde Ömer Halisdemir Üniversitesi