Hemodiyaliz Dünyanın Suyunu Tüketiyor: Ters Osmozdan Atılan Suyun Analizi ve Kullanılabilir Olması / Hemodialysis Consumes the World's Plenty of Water Water: the Analysis of Water Discharged from Reverse Osmosis and Usefulness

Amaç: Hemodiyaliz (HD) su sisteminde ham su; şebeke veya artezyen suyunu, saf su ise; konsantre HD çözeltilerinin seyreltilmesinde kullanılan arıtılmış suyu tanımlamaktadır. Saf su üretilirken ters ozmoz (RO) cihazından açığa çıkan ve çoğu kez kanalizasyona atılan “reddedilen su” ile tedavi sonrası hasta kanı ile temas etmiş HD atık suyu terim olarak karıştırılmaktadır. Çalışmada amacımız reddedilen suyun kalitesini göstererek atılmasını engellemektir. Gereç ve Yöntem: Hemodiyaliz dünyanın suyunu tüketiyor isimli çalışma için Manisa Celal Bayar Üniversitesi Etik Kurulundan onay alınmıştır. Suyun yüksek basınç altında yarı geçirgen zardan geçirilerek içindeki zararlı ve kirletici maddelerden filtrelenme işlemi RO sisteminin temel prensibidir. Çalışmamızda RO su arıtma sisteminde çıkan ve kanalizasyona giden suyun mikrobiyolojik ve kimyasal yönden analizi yapılmıştır. Bulgular: Merkezefendi Devlet Hastanesi HD ünitesinde su sisteminin farklı noktalarından tekniğine uygun şekilde su örnekleri alınarak Afyonkarahisar Halk Sağlığı Laboratuvarında mikrobiyolojik ve kimyasal testler yapılmıştır. Ters Osmoz su sisteminde giriş, arıtım sonrası, tanklar arası ve reddedilen su bölümleri olmak üzere 4 farklı noktadan alınan su örneklerine yapılan analizler sonucunda bu bölümlerin tamamı mikrobiyolojik yönden (Enterocuc/Fecal streptococ, E.Coli, toplam coliform) steril, Alüminyum ve Demir düzeyleri sıfır bulunmuştur. Amonyum sırasıyla 0.15, 0.13, 0.12 ve 0.13 mg/L; kondoktivite ise 540, 546, 492, 623 mS/cm, koku bulanıklık ve renk açısından uygun, pH 7.50-7.70, aynı zamanda Türkiye ve ABD EPA standart aralığında değerlendirilmiştir. Sonuç: Bu çalışma ile RO sisteminde reddedilen suyun her türlü amaç için kullanılabilir olduğu gösterilmiştir. Dünyada su kaynaklarının giderek azaldığı dikkate alındığında, kanalizasyona giden, ekonomiye ve doğal çevreye yük olan bu durumun önüne geçilerek bu durumda, suyun tasarruf edilebilir olmasını gösteren ulusal anlamda ilk çalışmadır.

Hemodialysis Consumes the World's Plenty of Water Water: the Analysis of Water Discharged from Reverse Osmosis and Usefulness

Introductıon: In hemodialysis (HD) water system; raw water describes mains or artesian water, pure water means the purified water used for dilution of concentrated HD solutions. During pure water production, the term “rejected water” is often misconstrued. This water is released from the reverse osmosis (RO) device and is typically discarded into the sewer. It is different from HD wastewater, which has come into contact with a patient's blood post-treatment. Our study aims to assess the quality of this rejected water and explore ways to repurpose it rather than disposing of it. Materıal and Method: Approval was obtained from Manisa Celal Bayar University Ethics Committee for the study titled Hemodialysis consumes the world's water. The basic principle of the RO system is to filter the water from harmful and polluting substances by passing it through a semi-permeable membrane under high pressure. In our study, microbiological and chemical analysis of the water coming out of the RO water treatment system and going to the sewer was made. Results: Microbiological and chemical tests were carried out in Afyonkarahisar Public Health Laboratory by taking water samples in accordance with the technique from different points of the water system in the HD unit of Merkezefendi State Hospital. As a result of the analyzes made on the water samples taken from 4 different points in the reverse osmosis water system, namely inlet, post-treatment, inter-tank and rejected water sections, all of these sections are microbiologically sterile (Enterocuc/Fecal streptococ, E. Coli, total coliform), Aluminum and Iron levels zero was found. Ammonium 0.15,0.13, 0.12 and 0.13 mg/L, respectively; and the conductivity was evaluated as 540, 546, 492, 623 mS/cm, suitable in terms of odor, turbidity and color, pH 7.50-7.70, also within the standard range of Turkey and USA EPA. Conclusion: With this study, it has been shown that the water rejected in the RO system can be used for all kinds of purposes. Considering that the world's water resources are decreasing, this is the first national study showing that water can be saved by preventing this situation that goes to the sewerage, which is a burden on the economy and the natural environment.

___

  • 1. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney [Internet]. 2013[cited 2023 Sep 29]; 3: 1–150. Available from: https://kdigo.org/wp-content/uploads/2017/02/KDIGO_2012_CKD_GL.pdf
  • 2. Karabey T, Karagözoğlu Ş. Hemodiyaliz sürecinde semptom yönetimi ve hemşirelik bakımı. J TOGU Heal Sci [Internet]. 2021[cited 2023 Sep 29];1(1):21-9. Available from: https://dergipark.org.tr/tr/download/article-file/2094151
  • 3. Fresenius Medical Care. Care and live. Annual report 2018[cited 2023 Sep 29]. Available from: https://www.freseniusmedicalcare.com/ fileadmin/data/com/pdf/Media_Center/Publications/ Annual_Reports/FME_Annual-Report_2018.pdf
  • 4. freseniusmedicalcare.com [Internet]. Fresenius Medical Care. Outlook;2019[cited 2023 Sep 29]. Available from: https://www. freseniusmedicalcare.com/en/investors/at-a-glance/ outlook/
  • 5. Agar, JWM. Green dialysis: the environmental challenges ahead. Semin. Dial. 2015;28: 186-92. doi: 10.1111/sdi.12324.
  • 6. Seyahi N, Koçyiğit İ, Ateş K, Süleymanlar G. Current Status of Renal Replacement Therapy in Turkey: A Summary of 2020 Turkish Society of Nephrology Registry Report. Turkish J Nephrol. 2022;31:103-9 DOI: 10.5152/turkjnephrol.2022.22308
  • 7. Renkin EM. The relation between dialysance, membrane area, permeability and blood flow in the artificial kidney. ASAIO J [Internet]. 1956[cited 2023 Sep 29];2(1):102-5. Available from: https://journals.lww.com/asaiojournal/Citation/1956/04000/ The_Relation_between_Dialysance, membrane_Area,.15.aspx
  • 8. Sigdell JE, Tersteegen B. Studies concerning the optimization of dialysate consumption. Nephron. 1995;71(4):401–6. doi: 10.1159/000188759.
  • 9. Polaschegg HD, Peter H. Optimization of dialysate flow can reduce cost. Dialysis Sched[1]ule in Haemodialysis and Peritoneal Dialy[1]sis, Perugia, November 1996.
  • 10. Polaschegg HD. Hemodialysis apparatus with automatic adjustment of dialysis solution flow. US patent 5092836. March 3, 1992.
  • 11. Kashiwagi T, Sato K, Kawakami S, Kiyomoto M, Enomoto M, Suzuki T et al. Effects of reduced dialysis fluid flow in hemodialysis. J Nippon Med Sch. 2013; 80(2):119-130. doi: 10.1272/jnms.80.119.
  • 12. Piccoli G, Nielsen L, Gendrot L, Fois A, Cataldo E, Cabiddu G. Prescribing Hemodialysis or Hemodiafiltration: When One Size Does Not Fit All the Proposal of a Personalized Approach Based on Comorbidity and Nutritional Status. Journal of Clinical Medicine [Internet]. 2018 Oct 8;7(10):331. Available from: http://dx.doi.org/10.3390/jcm7100331
  • 13. Brunati CCM, Gervasi F, Cabibbe M, Ravera F, Menegotto A, Querques M et al. Single session and weekly beta 2-microglobulin removal with different dialytic procedures: Comparison between high-flux standard bicarbonate hemodialysis, post-dilution hemodiafiltration, short frequent hemodialysis with nxstage technology and automated peritoneal dialysis. blood purif. 2019;48(1):86-96. doi: 10.1159/000499830.
  • 14. Bhimani JP, Ouseph R, Ward RA. Effect of increasing dialysate flow rate on diffusive mass transfer of urea, phosphate and {beta}2- microglobulin during clinical haemodialysis. Nephrol Dial Transplant: Nephrol Dial Transplant. 2010;25(12):3990–5. doi: 10.1093/ndt/gfq326
  • 15. Printz J: Démarche écologique et réflexion des industrielsenmatiére de traitement de l’eau pour hémodialyse: le point de vue Gambro. Marseille, Association des Techniciens de Dialyse (ATD) [Internet];2009[cited 2010 Apr 8]. Available from: http://www.dialyse. asso.fr/videos_marseille_session_2009.
  • 16. Roconn.com [Internet]. Troubleshooting RO Systems: Problem, cause, solution. [cited 2010 Apr 8]. Available from: http://www.roconn.com/ troubleshooting.html
  • 17. Hoenich NA, Levin R, Ronco C. Water for haemodialysis and related therapies: recent standards and emerging issues. Blood Puriff. 2010;29(2):81–5. doi: 10.1159/000249212.
  • 18. Renalbusiness.com [Internet]. Dwight M. Can going green in dialysis save cash? [cited 2010 Apr 8]. Available from: http://www.renalbusiness.com/articles/going-green-in-dialysis.html
  • 19. Agar JW, Simmonds RE, Knight R, Somerville CA: Using water wisely: new, affordable, and essential water conservation practices for facility and home hemodialysis. Hemodial Int 2009;13(1):32–7. doi: 10.1111/j.1542-4758.2009.00332.x.
  • 20. Tarrass F, Benjelloun M, Benjelloun O, Bensaha T. Water conservation: an emerging but vital issue in hemodialysis therapy. Blood Purif. 2010;30(3):181-5. doi: 10.1159/000321485.
  • 21. Rohde JB, Maliekkal SJ: Dialysis system with flow regulation device. United States Patent Application 20100018923. Available from: http://www. freepatentsonline.com/y2010/0018923.html
  • 22. Agar JW. Reusing and recycling dialysis reverse osmosis system reject water. Kidney Int. 2015 Oct;88(4):653-7. doi: 10.1038/ki.2015.213.
  • 23. National Primary Drinking Water Regulations: Drinking Water Contaminants. United States Environmental Protection Agency, Washington, DC, USA. [cited 2015 Apr 1].
  • 24. Milne S, Connor A, Mortimer F. Conserving water in haemodialysis: case study and how-to guide. Centre for Sustainable Healthcare, Oxford, UK. [cited 2015 Apr 23].
  • 25. Agar JW. It is time for "green dialysis". Hemodial Int. 2013 Oct;17(4):474-8. doi: 10.1111/hdi.12063.
  • 26. Ponson L, Arkouche W, Laville M. Toward green dialysis: focus on water savings. Hemodial Int. 2014 Jan;18(1):7-14. doi: 10.1111/hdi.12117.
  • 27. Connor A, Milne S, Owen A, Boyle G, Mortimer F, Stevens P. Toward greener dialysis: a case study to illustrate and encourage the salvage of reject water. J Ren Care. 2010 Jun;36(2):68-72. doi: 10.1111/j.1755-6686.2010.00153.x.
  • 28. Amato RL. Water treatment for hemodialysis--updated to include the latest AAMI standards for dialysate (RD52: 2004) continuing. Nephrol Nurs J [Internet]. 2005 Mar-Apr[cited 2023 Sep 29];32(2):151-67; quiz 168-70. Available from: https://pubmed.ncbi.nlm.nih.gov/15889801/
  • 29. Clark WR, Turk JE Jr. The NxStage System One. Semin Dial. 2004 Mar-Apr;17(2):167-70. doi: 10.1111/j.0894-0959.2004.17220.x.
  • 30. Hansen S. Sorbent dialysis in the third millennium. Nephrol News Issues [Internet]. 2006 Jan[cited 2023 Sep 29];20(1):43-5. Available from: https://pubmed.ncbi.nlm.nih.gov/16438438/